
Benchmarking Probabilistic Neural Network
Algorithms

Florin GORUNESCU

Department of Mathematics, Biostatistics and Computer Science
University of Medicine and Pharmacy, Craiova, Romania

gorun@umfcv.ro

Abstract. The progress of research in probabilistic neural network
(PNN) and related issues is straight related to directly compare the per-
formance of different PNN algorithm versions. In most cases, the PNN
application in real life issues involves the classical activation function
(Parzen-Cacoulos estimator) only. Although this estimator has been
used in most experimental works so far, it is not the only consistent
estimator available for practical purpose. The aim of this paper is to
introduce new activation functions and to present a performance bench-
mark for them, tested with a medical dataset containing information
regarding hepatic diseases.
Keywords: probabilistic neural networks, benchmark rules, activation
function
Math. Subjects Classification 2000: 90B15, 68T05

1 INTRODUCTION

A Neural Network (NN) is seen as an information paradigm inspired by the
way the human brain processes information. NN’s are applicable in virtually
every situation in which a relationship between the inputs and outputs exists.
The power of NN’s comes to life when a pattern that has no output associated
with it is given as an input. In this case, the network gives the output that
corresponds to a taught input pattern that is least different from the given
pattern.

A useful interpretation of the network outputs under certain circumstances
is to estimate the probability of class membership, in which case the network
is actually learning to estimate a probability density function (p.d.f.). This is
the case of the probabilistic neural network (PNN), a special type of neural
network using a kernel-based approximation to form an estimate of the p.d.f.’s
of categories in a classification problem. This particular type of ANN provides a
general solution to pattern classification problems by following the probabilistic
approach based on the Bayes decision theory. The network paradigm basically
uses the Parzen-Cacoulos estimator to obtain the corresponding p.d.f.’s of the
classification categories. PNN uses a supervised training set to develop proba-
bility density functions within a pattern layer. Key advantages of PNN are: the

2 F. GORUNESCU

fast training process, an inherently parallel structure guaranteed to converge to
an optimal classifier as the size of the representative training set increases and
that training samples can be added or removed without extensive retraining.
On the other hand, the main disadvantages refer to: not as general as back-
propagation, large memory requirements, slow execution of the network and it
requires a representative training set even more so than other types of NN’s.

Most papers in the PNN area present either performance results for the
(Specht) classical algorithm concerning a large range of classification problems,
or introduce optimisation methods related to the training data set only. Lack
of standard performance measures is widespread in many areas of benchmark
processes. For many other fields it is clear that defining a reasonable set of such
standard measures is a very difficult task, but the PNN case is not one of them.

Two problems are solved by this approach. First, we have introduced new
activation functions and compared both the accuracy and the running speed
of each PNN version in the training mode, these two training performance
measures being considered the main characteristic of a classification algorithm.
Second, we have compared the corresponding accuracy in the testing mode,
since the idea is that the performance of a neural network on the test set
estimates its performance in real use.

2 PNN ARCHITECTURE

The PNN consists of nodes allocated in three layers after the inputs:

– pattern layer/unit : there is one pattern node for each training example.
Each pattern node/unit forms a product of the input pattern vector x (for
classification) with a weight vector Wi, Zi = x · Wi, and then perform a
a nonlinear operation on Zi before outputting its activation level to the
summation node/unit. Let us note that, instead of the sigmoid activation
function (back-propagation algorithm), the nonlinear operation used here
is exp

[
(Zi − 1)/σ2

]
. Assuming that both x and Wi are normalized to unit

length, this is equivalent to using exp
[−(Wi − x)τ (Wi − x)/(2σ2)

]
.

– summation layer/unit : each summation node/unit receives the outputs
from pattern nodes associated with a given class. It simply sums the in-
puts from the pattern units that correspond to the category from which
the training pattern was selected,

∑
i exp

[−(Wi − x)τ (Wi − x)/(2σ2)
]
.

– output or decision layer/unit : the output nodes/units are two-input neu-
rons. These units produce binary outputs, related to two different categories
Ωr, Ωs, r 6= s, r, s = 1, 2, ..., q, by using the classification criterion:∑
i

exp
[−(Wi − x)τ (Wi − x)/(2σ2)

]
>

∑
j

exp
[−(Wj − x)τ (Wj − x)/(2σ2)

]
.

These units have only a single corresponding weight C, given by the loss
parameters the prior probabilities and the number of training patterns in
each category. Concretely, the corresponding weight is the ratio of a priori
probabilities, divided by the ratio of samples and multiplied by the ratio

Benchmarking Probabilistic Neural Network Algorithms 3

of losses, C = −hsls
hrlr

· nr

ns
. This ratio can be determined only from the

significance of the decision.

There were developed nonparametric techniques for estimating univariate
(or multivariate) p.d.f. from random samples. Briefly, by using the multivariate
Gaussian approximation, that is a sum of multivariate Gaussian distributions
centered at each training sample, we obtain the following form of the p.d.f.
fr(x)

fr(x) =
1

(2π)p/2σp
· 1
m
·

m∑

i=1

exp

(
−‖x− xi‖2

2σ2

)
, r = 1, 2, ..., q, (1)

where i is the (vector) pattern number, m is the total number of training
patterns, xi is the i -th training pattern from category (class) Ωr, p is the
input space dimension and σ is an adjustable ”smoothing” parameter using
the training procedure. The network is trained by setting the Wi weight vector
in one of the pattern units equal to each x pattern in the training set and then
connecting the pattern unit’s output to the appropriate summation unit.

3 BENCHMARK RULES

The dataset used for performing benchmark on PNN must be split into at least
two parts: one part on which the training is performed -the training set- and
another part on which the performance of the resulting network is tested -the
testing set. Such an evaluation is called cross-validation and it is necessary
to avoid the overfitting (overtraining) phenomenon. For two networks trained
on the same dataset, the one with larger training set error may actually be
better, since the other has concentrated on peculiarities of the training set at
the cost of losing much of the regularities needed for good generalization to new
(unknown) datasets. Classification performance has been reported in percent of
incorrectly classified examples, i.e. the classification error. This is better than
reporting the percentage of correctly classified examples, because the latter
makes important differences insufficiently clear. For instance, an accuracy of
98% is actually twice as good as one of 96%, which is easier to see if the
errors are reported (2% compared to 4%). Only the corresponding errors on
the training set and testing set were reported, even if one considers that a better
benchmark would involve three categories: training, validation and testing. The
training running speed has been reported in comparison with the classical PNN
activation function f1, to which corresponds the normalized speed equalling 1
(standard unit). Thus, we computed the speed for all activation functions in
competition, corresponding to the same training accuracy. Basically, smaller
the number of division knots N , faster the algorithm.

4 F. GORUNESCU

4 BENCHMARK COMPETITORS

For the benchmark process we have chosen a number of 19 types of activation
functions. Firstly, we have considered the standard PNN algorithm, correspond-
ing to the classical activation function:

f1(x) =
1

(2π)p/2σp
· 1
m
·

m∑

j=1

exp

(
−‖x− xj‖2

2σ2

)
(2)

Next, new activation functions were introduced in order to compare their
performance to the standard one. Below we list the new classifiers:

(a) Generalizations of the classical case, given by:

fkn =
1

(2π)p/2σp
· 1
m
·

m∑

j=1

exp
[
kn ·

(
−d(x, xj)2

2σ2

)]
, k ≥ 2, n ≥ 1

(b) An alternative to the classical case, based on Taylor’s polynomial ap-
proximation of exponentials:

fTr =
1

(2π)p/2σp
· 1
m
·

m∑

j=1

r∑

k=1

(
−d(x,xj)

2

2σ2

)k

k!
, r ≥ 1.

Note. For the benchmark process we considered r = 1, 2,..., 10.

5 BENCHMARKING APPLICATION

The dataset used for the benchmarking process has been chosen from the med-
ical field, involving the hepatic diseases domain. This data set has a lot of
difficulties during the classification task. The dataset has 299 instances with 15
attributes, divided into 4 classes, two classes having only 30 instances each and
one class having 60 instances, making thus the classification task harder. The
goal of this choice was two-fold. On the one hand, PNN in general is widely
applied in the medical domain and it is believed that it will receive extensive
application to biomedical systems in the future. On the other hand, such data
are far from being too homogeneous and, thus, represent a good choice for
benchmarking learning algorithms. The data consisted of medical records of
299 individuals from the Department of Internal Medicine, Division of Gas-
troenterology, University Emergency Hospital of Craiova, Romania, split in 60
patients with chronic hepatitis (CH), 179 patients with liver cirrhosis (LC), 30
patients with hepatic cancer (HCC) and 30 healthy people (HP). The PNN
has been applied to data in order to classify the group of individuals into four
categories, depending on the diagnosis type: 1 = HCC, 2 = LC, 3 = CH and 4
= HP.

Benchmarking Probabilistic Neural Network Algorithms 5

We have used an incremental-based searching technique, consisting into
equally dividing the searching domain of the ”smoothing” parameter σ by N
knots and using them in the training process to maximize the cost function.
Searching techniques based on Genetic Algorithm or Monte Carlo simulation
are also available to deepen the benchmark process.

5.1. COMPARING THE TRAINING RUNNING SPEED

The first comparison test involving PNN refers to the training speed, which
represents a major characteristic of this particular NN, since the main crit-
icism regarding PNN is that all training samples must be stored and used
in classifying new patterns, resulting in a very rapid increase in memory and
computing time. The benchmark for the training speed is represented by the
training speed of the classical PNN activation function f1, considered as 100%
speed and equalling the normalized value 1. In Figure 1 we displayed the cor-
responding speeds.

Fig. 1. Comparing the training speed

5.2. COMPARING THE CLASSIFICATION ERRORS

The second comparison test involving PNN refers to the classification per-
formance of each version. As we mentioned above, instead of considering ac-
curacies we considered the corresponding classification errors. We compared

6 F. GORUNESCU

the classification performance of alternative approaches both in training mode
and testing mode applying the k-fold cross-validation, used for relative small
datasets. Basically, each time we randomly split the initial data set (299 in-
stances) into two subsets, training and testing, using the 10-fold cross-validation
technique. A number of 254 instances (85%) of the initial dataset were withheld
from the initial set for the smoothing factor adjustment (the training process).

The highest performance is done by f34 (training -0% error/testing -19.61%
error) followed by fT8 and f31. On the other hand, the fastest PNN version
was f32, more than six times faster than the standard PNN version at the same
accuracy. As we remarked above, the choice of an optimal balance between
accuracy and speed is up to user. This benchmark underlies the idea that the
PNN application efficaciousness strongly depends on the activation function.
Let us note that in each case the testing accuracy is less than the training
accuracy, which represents a ’natural’ behavior.

Finally, we have studied the problem of choosing the appropriate number
N of dividing knots for the incremental search. Figure 2 shows the evolution of
errors (training process for the entire dataset -299 instances) with the number
of dividing knots (a decreasing trend of the error graph, becoming flat (zero
value) when the number of dividing knots increases).

Fig. 2. Comparing the training speed

Benchmarking Probabilistic Neural Network Algorithms 7

6 CONCLUSIONS AND FURTHER WORK

This paper describes the benchmarking rules and the dataset used to test the
performances of some PNN algorithms. We also introduced new activation func-
tions and tested them in comparison with the classical case. It also gives some
basic performance measures indicating the difficulty of the various problems.
These measures can be used as baselines for comparison. Further work must
use different databases in order to test the scalability of PNN, that is the ease
with which the network can be modified to fit different problems.

Acknowledgement. This paper has been conceived during my stay at
the Harrow School of Computer Science, University of Westminster, London,
UK, under REWARDING and DEVELOPING STAFF-HR Grant, September
2004-July 2005.

References

[1] C. Bishop,Neural Networks for Pattern Recognition, Oxford University Press,
1995.

[2] F. Gorunescu, M. Gorunescu, E. El-Darzi, M. Ene, S. Gorunescu, Statis-
tical Comparison of a Probabilistic Neural Network Approach in Hepatic Cancer
Diagnosis, Proceedings Eurocon2005 -IEEE International Conference on ”Com-
puter as a tool”, Belgrade, Serbia, November 21-24, 1-4244-0049-X/05/20.00
c©2005 IEEE, 2005, 237–240.

[3] ***, Proben 1-A Set of Neural Network Benchmark Problems and Benchmarking
Rules, Technical Report 21/94, Fakultat fur Informatik, Universitat Karlsruhe,
Germany, 1994.

[4] D.F. Specht, Probabilistic Neural Networks. Neural Networks. 31, 1990, 109–
118.

[5] A. Zaknich, Introduction to the modified probabilistic neural network for general
signal processing applications. IEEE Transactions on Signal Processing, 46, 1998,
1980–1990.

