
VoSyS: A System by Voice to Answer in
Inheritance-Based Knowledge Systems

Nicolae ŢĂNDĂREANU

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania

ntand@oltenia.ro

Abstract. In a sequence of papers ([1], [2], [3]) some model to rep-
resent the knowledge by using the inheritance is presented and the
computability of the answer mapping is studied. VoSyS is an implemen-
tation of this model and it is briefly described in this paper. To obtain
this product we used a bidirectional connection Java-Prolog and a Java
based speech technology. The capabilities of the graphical interfaces
and interfaces by voice are combined to obtain a dialog user-system.
VoSyS is able to receive an interrogation and to speak the correspond-
ing answer obtained as a result of an inference in Prolog.
Math. Subject Classification 2000: 68T30, 68T10
Keywords: knowledge base, inheritance, speech technology

1 INTRODUCTION

The use of speech technology to accomplish interfaces by voice in the domain
of knowledge bases is an attractive subject. In general this is an interesting
problem for dialogue systems. A conversation user-system consists of parts
of utterances: statements by the user, followed by replies from the system.
More precisely, if we use knowledge bases then the statement of the user is an
interrogation and the reply of the system is the answer. The answer is a result
of some computations performed by using the entities of the knowledge base.

In this paper we consider the case of the inheritance-based knowledge sys-
tems. In such systems the knowledge is represented in a proper manner as
objects and the processing uses an engine based on the inheritance mechanism.
The following aspects are treated in this paper:

- Using several elements of lattice theory we studied in [3] several problems
connected by the answer mapping in inheritance-based knowledge systems.
The application presented in this paper uses an algorithm to compute the
values of this mapping based on these results. This algorithm is concisely
described in the last part of Section 2.

- We present the use of speech technology to implement the reply of the
system to an interrogation in Section 3.



92 N. ŢĂNDĂREANU

- The software presented in this paper can be applied to all knowledge pieces
that can be modeled by the inheritance mechanism. In the modeling process
it is possible to appear some particular constraints on the answer mapping.
The adaptation of the computations to obtain the accurate answer is also
discussed and a corresponding solution is given in Section 3.

2 INHERITANCE-BASED KNOWLEDGE
REPRESENTATION

2.1 KNOWLEDGE BASES

The entities of the representation language LRepr are of the form
frame(name, name−list, attribute−list)

where name is the frame name; name−list is a list containing the name of
the parents; attribute−list is a list whose elements are entities of the form
attr(attribute−name, value), attr(attribute−name, proc(name)) or attr(attri−
bute−name, demon); the first case specifies the direct value of the attribute;
in the second case, name is the name of some procedure which computes the
corresponding value; the last form specifies that we have an abstract attribute
and for some particular case its value is obtained by a procedure.

We consider the sets: VAttr (values for attributes); Lfr−name (frame names);
LAttr (attribute names); Lparent (parent names); Lproc (procedure names);
QAttr = VAttr ∪ {proc(x) | x ∈ Lproc}. A knowledge base is a finite subset
of LRepr.

2.2 THE ANSWER MAPPING

Let K be a knowledge base. We consider the graph GK = (K, ΓK) where
(fu, fv) ∈ ΓK iff the name of fu is a parent of fv. The set of all the paths
from x to y in GK is denoted by Path(x, y). An element f ∈ K is a predecessor
of g ∈ K if there is a path from f to g. A predecessor f of g is a nearest prede-
cessor having the property α if f satisfies α and does not exist a predecessor
h of g such that h satisfies α and dist(h, g) < dist(f, g), where dist(x, y) is the
length of the shortest path from x to y.

If frame(f, [p1, . . . , ps], [attr(a1, v1), . . . ,attr(ak, vk)]) ∈ K then we denote
Slot(f) = {(a1, v1), . . . , (ak, vk)}. Pred(f) is the set of all the frame names
which are predecessors of f . We say that the frame f contains the attribute
name a if there is a slot (a, u) ∈ Slot(f) for some u ∈ QAttr ∪ {demon}.
Equivalently we shall write a ∈ f .

For any attribute name a ∈ LAttr we define: Neara(f) = {f} if a ∈ f and
Neara(f) = {g ∈ Pred(f) | g is a nearest predecessor, a ∈ g} if a /∈ f .

We denote by ProcK the set of all elements (f, a) ∈ Lfr−name × LAttr for
which the attribute a for f can be computed by means of a procedure. By
ΩK(f, a) we denote the procedure name computing this attribute.



VoSyS: a system by voice to answer in inheritance-based knowledge systems 93

We denote by MK the set of all the pairs (f, a) for which the attribute a
can be computed for f but not by means of a procedure:

MK = {(f, a) | (f, a) /∈ ProcK, Neara(f) 6= ∅}

The mapping CompK which computes the value of an attribute for a given
frame is recursively defined as follows:
• If (f, a) ∈ MK then CompK(f, a) = u, where u ∈ VAttr ∪ {demon}, {g} =
Neara(f) and (a, u) ∈ Slot(g)
• Let be (f, a) ∈ ProcK and (b1, . . . , bt) the arguments of (ΩK(f, a)). The value
CompK is obtained as follows:

− If CompK(f, b1), . . . , CompK(f, bt) can be computed and their values
belong to VAttr ∪ {demon, unknown} then

CompK(f, a) = ΩK(f, a)(CompK(f, b1), . . . , CompK(f, bt))
− Otherwise CompK(f, a) = undefined.

• If (f, a) ∈ Lfr−name × LAttr \ (MK ∪ ProcK) then CompK(f, a) = unknown
We consider the query language Lfr−name × LAttr. The answer function is

defined as follows: Ans(K, (f, a)) = CompK(f, a)

2.3 COMPUTABILITY OF THE ANSWER MAPPING

We consider a finite set L and a decomposition L = NL∪TL, where NL∩TL = ∅.
Let ω : NL −→ ⋃

k≥1{k} × Lk be a pairwise mapping on L. We consider an
element b0 ∈ NL and we denote by Treeω(b0) the set of all the ω-labelled trees
t = (A,R, h) such that h(root(t)) = b0 ([3]).

We consider the equivalence relation ([3]) defined as follows: for t1, t2 ∈
Treeω(b0) we write t1 ≈ t2 if they are identical as structure.

Let be t = (A,R, h) ∈ Treeω(b0). We denote by S(t) the set defined by
((l1, . . . , ls), (b1, . . . , bs)) ∈ S(t) iff there is (1, i1, . . . , is) ∈ Path(t) such that
(1, i1) ∈ R(l1), . . . , (is−1, is) ∈ R(ls) and h(i1) = b1, . . . , h(is) = bs.

We define the operations ∨ : Treeω(b0)/≈ × Treeω(b0)/≈ −→ Treeω(b0)/≈
and ∧ : Treeω(b0)/≈ × Treeω(b0)/≈ −→ Treeω(b0)/≈ as follows:

[t1] ∨ [t2] = [t], where S(t) = S(t1) ∪ S(t2)
[t1] ∧ [t2] = [t], where S(t) = S(t1) ∩ S(t2)

The structure (Treeω(b0)/≈,∨,∧) is a distributive lattice ([2]).
Let us consider X ⊆ L and define:

U(X) = {y ∈ L | ∃a ∈ X ∩NL,∃i ∈ {1, . . . , ω1(a)} : y = priω2(a)}
For an arbitrary element b ∈ L we define the sequence:

S0
b = U({b}); Sn+1

b = Sn
b ∪ U(Sn

b ) for n ≥ 0
There is m(b) ≥ 1 such that S0

b ⊂ . . . ⊂ S
m(b)
b = S

m(b)+1
b = . . .. Thus we can

define the mapping T : L −→ 2L as follows:
T (b) = ∅ if b ∈ TL; T (b) = S

m(b)
b if b ∈ NL

The operator T is used to characterize the existence of the greatest element
in Treeω(b0)/≈. The lattice (Treeω(b0)/≈,∨,∧) contains a greatest element if
and only if b /∈ T (b) for every b ∈ {b0} ∪ T (b0) ([2]).



94 N. ŢĂNDĂREANU

If we denote TK = (Lfr−name(K) × LAttr(K)) \ (MK ∪ ProcK) then TK =
{(f, a) ∈ Lfr−name(K)× LAttr(K) | Neara(f) = ∅}.
Finally we obtain the following decomposition into pairwise disjoint sets:

Lfr−name(K)× LAttr(K) = MK ∪ ProcK ∪ TK
From the definition of CompK it follows that

1) CompK(f, a) ∈ VAttr ∪ {demon} for (f, a) ∈ MK
2) CompK(f, a) = unknown for (f, a) ∈ TK.

The computation of the value CompK(f, a) for (f, a) ∈ ProcK can be charac-
terized by means of the lattice theory, using the properties of the ω-labelled
trees. In order to accomplish this aim we consider

L = MK ∪ ProcK ∪ TK; NL = ProcK, TL = MK ∪ TK
We define the pairwise mapping ω : ProcK −→ ⋃

k≥1{k} × Lk as follows.
For every (f, a) ∈ ProcK we take the arguments (b1, . . . , bn) of the procedure
ΩK(f, a) and take ω1(f, a) = n, ω2(f, a) =< (f, b1), . . . , (f, bn) >.

Based on the results presented in this section we can relieve the following
steps to compute the values of the mapping CompK ([3]):

Step 1: Compute MK and TK.
Step 2: If (f, a) ∈ MK then search u ∈ VAttr ∪ {demon} such that (a, u) ∈

Slot(g), where {g} = Neara(f); Let CompK(f, a) = u; else go to Step 2.
Step 3: If (f, a) ∈ TK then CompK(f, a) = unknown; else go to Step 3.
Step 4: If the lattice Treeω(f, a)/ ≈ does not contain a greatest element

then CompK(f, a) = undefined; otherwise let [t0] be the greatest element; if
the frontier of t0 belong to (MK ∪ TK)∗ \M∗

K then CompK(f, a) = unknown;
else

CompK(f, a) = ΩK(f, a)(CompK(f, b1), . . . , CompK(f, bt))
where (b1, . . . , bt) are the arguments of (ΩK(f, a)).

3 VoSyS: AN ANSWERING SYSTEM BY VOICE

The main purpose of this section is to show an implementation of the model
presented in the previous section. The implementation accomplished is a blend
of the power offered by the graphical user interfaces and the flavor of the speech
technology.

In order to implement the results described in the previous section we used
Java technologies (jdk1.5.0−02, Java Speech API), the language Prolog and
a bidirectional connection Java-Prolog (the product JIProlog v3.0.2−8 of Ugo
Chirico, [4]). As auxiliary software we used Apache Ant and XML to allocate
the resources for speech technology.

3.1 ARCHITECTURE OF VoSyS

The architecture of the system VoSyS is represented in Figure 1. There are two
modules in Prolog:

- The universal module UM is represented by 5 files:



VoSyS: a system by voice to answer in inheritance-based knowledge systems 95

Fig. 1. VoSyS architecture

• lib.load: load the libraries jipxterm.jar and jipxsystem which are used
to build the answer as a string;

• inherit−engine.pl: accomplishes the computation of the answer map-
ping CompK;

• init−comp.pl: several steps necessary to initiate the computation of
the mapping CompK, especially to obtain the sets MK and TK); the
computability condition specified in the algorithm of the previous sec-
tion is used;

• list−obj.pl: obtain the list of the objects from the file Kb−name.pl;
• list−attr.pl: obtain the list of the attributes from the file Kb−name.pl.

- The specific module SM is composed from 4 files:
• Kb−name.kb: this file specifies the name of the knowledge base; the

selection of this name is the starting point of the application;
• Kb−name.pl: the main part of this file defines the content of the

knowledge base;
• Kb−name.txt: the content of this file is displayed if the user wishes

to see the knowledge base content;
• Kb−name.ans: this file builds the sentences associated to answer.

We observe that the module UM does not depend on the feature of the knowl-
edge base. The second module, which is not a component of the system, depends



96 N. ŢĂNDĂREANU

on this feature (the content of the knowledge base, the output sentences of the
answer mapping etc).

To implement the application we used: the Java language, the product
JIProlog to obtain the connection Java-Prolog (Ugo Chirico, Shareware Li-
cense,[4]) and software ”speech to text” (Java Speech API). To allocate and
deallocate the resources required by the connection by voice Apache Ant and
XML were used as auxiliary software.

3.2 FUNCTIONALITY OF VoSyS

Every time the system V oSyS is launched, the user is informed about the tasks
of the system and the following phrases are sent to user by voice:

Hello user! My name is VoSys.
I am a product of the Research Center for Artificial Intelligence,
University of Craiova from Romania. I can help you to find the
value of an object attribute in a knowledge system based on
inheritance.

In the next step the graphical user interface from Figure 2 is displayed. Two
windows (TextArea in Java) for text communication from V oSyS to user can
be viewed: the first window contains the results of interrogation; the second
windows is used to write in some auxiliary information (the actions performed
by buttons, the content of the knowledge base and the values of the mapping
CompK).

We observe the the graphical interface includes 10 buttons and they are
divided into two parts:

- A group of 7 buttons is used to initiate the process of computation and to
close the application.

- A group of 3 buttons are used to compute the value of the answer mapping,
to generate the output sentence and to speak this sentence.

The main buttons are labeled from 1 to 8 to specify the order of action:

• Start-processing(1): select the name Kb−name of the knowledge base;
• Load−KB(2): load the selected knowledge base;
• Load−objects(3): compute the objects from Kb−name.pl and introduce

them into the first structure of type Choice of the interface, labeled by
Choose an object name;

• Load−attributes(4): compute the attributes from Kb−name.pl and intro-
duce them into the second structure of type Choice, labeled by Choose an
attribute name;

• Init−CompK(5): initiate the computation process of the answer mapping;
• Load−library(6): load the libraries jipxterm.jar and jipxsystem.jar used

to perform some atom-string computations in Prolog and to generate the
output sentences;



VoSyS: a system by voice to answer in inheritance-based knowledge systems 97

Fig. 2. The graphical interface of V oSyS

• CompK(7): compute the values of the mapping CompK for the pair (f, a)
where f and a are the frame name and the attribute name selected from
the structures of type Choice;

• Answer(8): introduce the value computed by CompK(8) in a sentence,
generate this sentence in a natural language, write the text on display and
send it to user by voice;

• Content of KB: put the content of the knowledge base on display;
• Finish: close V oSyS.

3.3 CASE STUDY

In general we receive a knowledge piece given in a natural language. In order
to use V oSyS we have to transpose this piece into a finite subset of LRepr.
Equivalently this means that we have to obtain the file Kb−name.pl. The
modeling process is not a simple process because various conditions can be
encountered in the knowledge piece. We exemplify the modeling process for
the following knowledge piece:

In a competition organized by some association, every candidate obtains
the scores s1, s2 and s3. Consequently a general score s1 + s2 + s3 is
obtained for each candidate. Peter, Elvis, Maria and Susan participate to
this competition. Peter likes to play tennis. He has obtained the scores s1 =
8, s2 = 9 and s3 = 7. Elvis has obtained the scores s1 = 9 and s2 = 5. The
score s3 is unknown for Elvis because he did not participate to the last test.



98 N. ŢĂNDĂREANU

Fig. 3. Step 1: choose the base name

Fig. 4. The result of interrogation



VoSyS: a system by voice to answer in inheritance-based knowledge systems 99

Susan has obtained the scores s1 = 9, s2 = 8 and s3 = 5. She is a student.
Every student likes to edit a text using a computer. Elvis was born in 1987.
The age of Susan is 20. Maria obtained the same scores as Susan, she likes
to edit a text using a computer also and she is 5 years younger than Susan.

If we try to model this piece into a knowledge base we obtain the following
description:

frame(competitor,[],[attr(general_score,proc(pr_score)),
attr(age,proc(pr_age)),attr(born_year,proc(pr_born))]).

frame(’Peter’,[competitor],[attr(likes,’to play tennis’),
attr(first_score,8),attr(second_score,9),attr(third_score,7)]).

frame(’Elvis’,[competitor],[attr(first_score,9),
attr(second_score,5),attr(born_year,1987)]).

frame(’Susan’,[competitor,student],[attr(first_score,9),
attr(second_score,8),attr(third_score,5),attr(age,20)]).

frame(student,[],[attr(likes,’to edit a text using a computer.’)]).
frame(’Maria’,[’Susan’],[attr(restricted_age,proc(pr_age_1)),

attr(difference_of_age,5),attr(restricted_born_year,
proc(pr_born1))]).

We remark that two distinct attributes to represent the age and also two
distinct attributes for the born year were used. This is explained by the fact
that the object Maria is younger than Susan and thus in order to find the age
of Maria we have to compute first the age of Susan and then we obtain the age
of Maria. For all other objects we use the attribute age and only for Maria we
use the attribute restricted−age. This is a restriction imposed by the model
and not by the knowledge piece. A solution is given in the file Kb−name.ans:
every time when the attribute age or born−year is required by the user for
the object Maria, it is directed to restricted−age and restricted−born−year
respectively. For example, the system gives the answer Maria is born in 1991
as we can view in Figure 4.

The following information are also included in the file Kb−name.pl: the
arguments of each procedure, the specific values of the answer mapping for the
case when one of the arguments is undefined or unknown and the information
male or female for a person.

procedura(pr_score,[first_score,second_score,third_score]).
procedura(pr_age,[born_year]).
procedura(pr_born,[age]).
procedura(pr_born1,[restricted_age]).
procedura(pr_age_1,[age,difference_of_age]).
calc_proc(_,Param,’undefined’):-exists_undef(Param).
calc_proc(_,Param,’unknown’):-exists_unkn(Param),!.
calc_proc(pr_score,[X,Y,Z],W):-W is X+Y+Z.
calc_proc(pr_age,[X],W):-date(Y,_,_),W is Y-X.
calc_proc(N,[X],W):-(N=pr_born;N=pr_born1),date(Y,_,_),W is Y-X.



100 N. ŢĂNDĂREANU

calc_proc(pr_age_1,[X,Y],W):-W is X-Y.
exists_undef([X|_]):-X=’undefined’,!.
exists_undef([_|Q]):-exists_undef(Q).
exists_unkn([X|_]):-X=’unknown’,!.
exists_unkn([_|Q]):-exists_unkn(Q).
masc(’Peter’).
masc(’Elvis’).
fem(’Maria’).
fem(’Susan’).

Let us compare the content of the communication windows from the graphical
interface. If we send the sequence of interrogations

(Maria, likes), (Peter, general−score), (competitor, age),
(Susan, age), (Susan, born−year), (Maria, born−year),
(Maria, restricted−born−year), (competitor, likes)

then we obtain the following results:
In the window for ”Result of interrogation”:

’Maria likes to edit a text using a computer.’
’The general score for Peter is 24’
’The value of the attribute age for competitor is undefined’
’The age of Susan is 20’
’Susan is born in 1986’
’You have to compute the attribute restricted_born_year for Maria’
’Maria is born in 1991’
’The value of the attribute likes for competitor is unknown’

In the window ”Auxiliary information”:

CompK: ’to edit a text using a computer.’
CompK: 24
CompK: undefined
CompK: 20
CompK: 1986
CompK: 1986
CompK: 1991
CompK: unknown

We can observe that the value CompK(Maria, born−year) is 1986 but the
answer is the sentence ’You have to compute the attribute restricted−born−year
for Maria’. If we ask for CompK(Maria, restricted−born−year) then the value
is 1991 and the answer is the sentence ’Maria is born in 1991’.

4 FUTURE WORK

The system can be extended to use the recognition voice. Thus the query can
be introduced as a text or can be spoken at a microphone.



VoSyS: a system by voice to answer in inheritance-based knowledge systems 101

References

[1] N. Ţăndăreanu, Lattices of labelled ordered trees (I), Annals of the University
of Craiova, Mathematics and Computer Science Series, Vol. XXVIII, 2001, p.29-39

[2] N. Ţăndăreanu, Lattices of labelled ordered trees (II), Annals of the Univer-
sity of Craiova, Mathematics and Computer Science Series, Vol. XXIX, 2002 (to
appear)

[3] N. Ţăndăreanu, Inheritance-based Knowledge Systems and Their Answer Func-
tions Computation Using Lattice Theory, Romanian Journal of Information Sci-
ence and Technology, Volume 6, Numbers 1-2, 2003, 227-248

[4] Ugo Chirico, JIPrologRefManual.pdf, http://www.ugosweb.com/jiprolog


