
Open-Source, Cross-Platform Java Tools
Working Together on a Dialogue System

Oana NICOLAE

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
oananicolae1981@yahoo.com

Abstract. The aim of this paper is to give an answer to the various
raised questions about interaction between software technologies which
allow adding speech and the capacity to reason to an application.We
want to express our point of view concerning the technologies, their
behavior and tools needed to build dialogue systems capable to return
smart outputs based on reasoning, from an application development
perspective.
Keywords: knowledge based system, rule-based system, rules, infer-
ence engine, Jess, Sphinx, FreeTTS, speech synthesis, speech recogni-
tion, speech understanding.

1 INTRODUCTION

Nowadays, a well designed dialogue system depends on a smart and friendly
interface that can overcome the limitations of existing speech technologies:
speech recognition, speech understanding and speech synthesis.

These interfaces must not only recognize the spoken words, but also under-
stand the user’s query and create a synthetic and accordingly answer.

This is possible because a speech understanding system could render in con-
text the spoken commands, establishing this way, the execution of the actions
for suitable inputs.

A knowledge base is also necessary to guide the system in the interpretation
of the spoken inputs. The chosen technology to manipulate data is a rule-based
one, because rules engines are widely recognized technology component for the
applications of knowledge-based techniques.

2 CURRENT INFORMATION OF THE PROBLEM
DOMAIN: KNOWLEDGE BASE SYSTEMS

Existing knowledge base systems are used to model complex behavior, through
a large number of rules, over a set of data. The structure of a rule-based system
contains a fact base called ”working memory of the system”, where the known

Open-Source, Cross-Platform Java Tools 103

facts at different moments are stored, a base of rules which contains the rules
used to infer new facts and an inference engine which selects some applicable
rule to infer the new facts (advantage of the Rete algorithm - 1982).

The rules of the rule base are synthetic structures of the form:

IF
LHS (predicate or premises)

THEN
RHS (conclusions - > functions calling)

The conclusions represent the rule antecedent and they are patterns that
are tested for the rule activation. If the conclusion match with the facts base,
the rule can fire, and the actions representing the consequent (RHS) of the rule
are performed.

The pattern matching process is performed during the inference process,
and the variables appearing into the patterns are bounded to some constants
from the facts of the fact base.

There are two important types of inference algorithms:

– forward chaining algorithms

– backward chaining algorithms

3 RULE-BASED SYSTEMS vs. RELATIONAL
DATABASES SYSTEMS

Knowledge rule-based systems technology represent a combination of a
”storehouse of expertise” (the knowledge base) and a reasoning mechanism,
enhanced with deductive capabilities and inference.

A relational database stores all its data inside tables, and nothing more.
All operations on data are done on the tables themselves or produce another
tables as result. We never see anything except for tables. Standard relational
databases have no deductive capabilities, and the development of a semantic
foundation of such databases is practically null.

For our application, we could have designed a classic relational database,
defining all the attributes, because we knew them at the time, and built the
application on this design.

But we need a system which let us manage what gets stored in the knowledge
base and how the application would react to the data going in and coming out
of the system, without made changes all the time.

We choose Jess (Java Expert System Shell) to solve this problem, so we
decided to use a rule-based engine.

104 O. NICOLAE

4 WHY WE CHOOSE JESS?

Jess is an expert system shell and scripting language written entirely in Java
language. Jess supports the development of rule-based expert systems which
can be tied with code written in the powerful Java language.

Jess was for our application an attractive candidate. It’s syntax is a simple
one, and for those initiated in the old LISP language or in CLIPS (C Language
Integrated Production System) language is relatively easy to integrate and
understand Jess language. Jess can process a great number of rules quickly and
is a software stable product. It is small, light and one of the fastest rule engines
available.

Jess has come with all the portability and security advantages of Java along
with the ability to write Java applications or applets. However, this also intro-
duces Java’s slower execution speed, but this is more than compensated by the
fast Rete algorithm it employs.

Jess is a runtime engine which supports forward and limited backward-
chaining. As the most rules engines, rules are specified as declarative patterns,
not procedural code. As we know, the knowledge representation for an expert
system means facts and rules.

For Jess, facts are primary means of passing data. We can pass a data (or
a value) to Jess for some computation, but this thing it is not proper for Jess’s
type of action. Instead, simply assert a fact with that data and have a rule that
fires when that data appears. The presence or modification of facts can cause
rules to fire, which can then change other facts causing more rules to fire, until
no further rules are activated (no patterns fully match)([1],[2],[3],[4]).

For the application we choose a mix between Jess language and Java lan-
guage by embedding Jess library into Java, although Jess offers possibilities to
use pure Jess language scripts or pure Java code.

Jess can also be used in a multithreaded environment. Each individual
jess.Rete object represents an independent reasoning engine, so a single pro-
gram can then include several independent engines.

5 THE APPLICATION ARCHITECTURE

Our application,VoiceMyth, is in fact a spoken dialogue system.Spoken dialogue
systems are one of the main applications of speech and language processing. In
spoken dialogue systems all the components of a speech and language processing
systems are integrated. Traditionally, into a dialogue system, natural language
understanding is integrated with a speech recognizer and a speech synthesizer.

On this context, the world purpose, is to develop spoken dialogue systems
with a natural and flexible dialog flow based on interfaces by voice, in which
the user has no restrictions in communicate his commands. The system should
interpret each utterance and then find the intention of the user.

Our application, VoiceMyth is more a system driven type of dialogue sys-
tem, because the dialogue flow is restricted to some fixed words or phrases.

Open-Source, Cross-Platform Java Tools 105

The main modules of the application are: a speech recognizer, a speech
understanding module, a text-to-speech tool, a dialog manager and an inference
engine to manipulate the knowledge base.

The input data represents an acoustic sequence spoken by user at micro-
phone. The recognizer module processes the acoustic data and passes a word
graph to the language understanding module.

The role of the speech understanding module is to analyze the user query
and to produce a representation of its semantic content that allows the dialogue
manager to take a decision about the dialogue orientation taking into account
the dialogue context.

The dialogue manager integrates the understood sentence or word into the
system belief and decides on the necessary system actions. In the end, it passes
the text string for text-to-speech module : the answer of the application. A
knowledge base containing task-specific information may be accessed by the
language understanding module and the dialogue manager.

Fig. 1. The architecture of the VoiceMyth application

5.1 SPEECH RECOGNIZER MODULE

WHAT IS SPHINX? Sphinx is a flexible and modular system developed
entirely on the Java platform, highly portable and easy to use with multithread.
In our application we used the Sphinx-4 version of this open-source, Java tool.

USING SPHINX-4 ON VoiceMyth APPLICATION. The beauty
of the Sphinx-4 system is its architectural design. Other open-source recognizers

106 O. NICOLAE

are available, but Sphinx-4 has a nicely documented modular object-oriented
framework that allows plug-in classes. ([1], [6])

In our application, the speech recognizer module has its own thread, that
makes it an individual module and allow us to manipulate it easily, without any
interfering. Its purpose is to acquire the acoustic input generated by speaker and
to give it the specific parameters at the front-end module, which communicates
the derived feature to the decoding block. The decoding block contains three
components: the search manager, the linguist and the acoustic scorer, which
work in tandem to perform the decoding.

It is well known that in the translation from sound to graph’s words, some
mechanism that affect the message may appear: the psychology of the speaker,
semantics, rules of discourse, syntax, lexicon, prosodic system, phonemic sys-
tem, ambient environmental noise and the microphone used.

The obtained sequence, supposed to be correct is then assumed by the
speech understanding module.

When we run the application, we must specify to the JVM that the recogni-
tion module use an additional amount of memory for the recognizer’s vocabu-
lary and library loading, so we must add a parameter specifying the additional
virtual memory used:(e.g.-mx256m).

The configuration of a particular Sphinx-4 system is determined by a con-
figuration file in XML format. The configuration file for our application is
available in the file voicemyth.config.xml and it determines which components
are to be used in the system and establish detailed configuration of each of
these components (e.g. the grammar configuration: where we must specify the
grammar created by us in JSGF (Java Speech Grammar Format) format, where
we define some words or phrase patterns for the recognized acoustic inputs).

5.2 SPEECH SYNTHESIZER MODULE

WHAT IS FreeTTS ? FreeTTS is a freely, available text-to-speech syn-
thesizer written entirely in Java programming language and it is based on a
small run-time speech engine developed at Carnegie Mellon University, named
Flite1.1.

FreeTTS includes an engine for the vocal synthesis that supports a certain
number of voices (male and female) at different frequencies. We used in our
application the recent version of this engine: FreeTTS 1.2.1.

USING FreeTTS ON VoiceMyth APPLICATION. FreeTTS is a great
toolkit for all Java programmers: to build their own applications and to con-
tribute to the open-source community. FreeTTS provides partial support for
JSAPI (Java Speech API), only a subset of JSAPI 1.0 javax.speech.synthesis
specification. It is recommended to use JSAPI to interface with FreeTTS be-
cause JSAPI interface provides the best methods of controlling and using
FreeTTS. ([1], [5])

Open-Source, Cross-Platform Java Tools 107

The text-to-speech module creates the speech output for our application,
being under the control of the dialogue manager. This one provides some tem-
plates for the answers of the application. These templates are filled in with
values from the current system belief and the resulting text is passed to the
text-to-speech module: the FreeTTS speech engine.

The speech synthesizer module has, in our application, its own thread. The
resources for the speech engine are allocated and the engine moves into the
resume state, each time we want an additionally speech output, besides the
standard, written one. The application output represents the answer of the
inference engine to the user spoken query. This answer is then mapped by the
dialogue manager, into a proper form to display. This form represents the input
for the text-to-speech engine.

The process of transforming text into speech contains two phases: first the
text goes through analysis and then the resulting information is used to gen-
erate the synthetic speech signal. There are some steps in the complex process
of post analysis. The text pre-processing step analyze the text for the special
inputs of the English language: abbreviations, acronyms, dates, times, num-
bers, currency amounts, email addresses.Then next steps are: text-to-phoneme
conversion, prosody analysis and the waveform production.

FreeTTS engine enable full control about the speech signal. The application
VoiceMyth provides the possibility to choose a voice between three types of
voices: a 8 khz, diphone male English voice named kevin, a 16 khz diphone
male English voice named kevin16and a16khz limited domain, male US English
voice named alan. The user could also set the properties of a chosen voice: the
speaking rate, the volume and the pitch. FreeTTS engine also has it’s limits
as it ignores JSML Speech Markup. FreeTTS JSAPI will process JSML, but
currently does not apply the markup to the generated speech. The speech signal
is an artificial-sounding voice that is highly understandable.

5.3 HOW WORKS THE INFERENCE ENGINE MODULE?

As we said before, the inference engine of our application is the Jess’s inference
engine itself. The Jess’s environment provides us a knowledge base where we
could specify the templates we need, the facts, the rules and the queries.

The knowledge base is in fact a clp file which is loaded by the Jess’s engine.
The dialog manager and the speech understanding module model the user query
so it could be passed to the inference engine, into a proper, understandable
form. A fact containing the necessary data is passed into the knowledge base,
and some rule responsible with this kind of facts fires, giving to the application
the expecting answer. This answer is than take over by the dialog manager and
the speech understanding module and mapped into a proper, particular form
for the text-to-speech module.

108 O. NICOLAE

5.4 THE DIALOGUE MANAGER MODULE

The dialogue manager is like a long-time goal of our application. Its role in
developing spoken dialogue systems is to provide a natural and flexible dialogue
flow which is adaptive to the user’s spoken phrases or words. It is better known
that for the recognizer module representing in our application by Sphinx-4, the
long phrases are spoken by the user, the faster and correct recognition process
is done.

The dialogue manager has to monitor the dialogue flow, collect the informa-
tion given by the user, interact with the application background, and to decide
whether and which further information is required or if an action has to be
performed. From an utterance like Show the winners from Japain the system
is able to assign the values country to Japain, and the value Shizuka Arakawa
to the slot namecompetitor from knowledge base.

If there is only a single database entry with this name, no further infor-
mation is required and the requested information is retourned to the user.
Otherwise, the given information is not sufficient to meet the dialog goal, in
which case the dialog manager tries to fill more slots with values in order to
refine the knowledge base quest.

5.5 THE SPEECH UNDERSTANDING MODULE AND ITS
FUNCTIONALITY

The speech recognizer module passes the word graph to the natural speech
understanding module. The language understanding module has two task:

– to compute the meaning of the words or phrase
– to find and score the most probable path through the word graph

The user of our application always has in mind a particular purpose : he
speaks some words or a phrase and he aspects the application should faster an-
swer back a specific, correct information.Usually, the output of our application
provides two formats of displaying the results: a persistent written one, and
an additionally spoken one. In every spoken input, the user should insert some
information items, that help the application to determine the dialogue goal
and the current dialogue state. (e.g. the spoken utterance : ”show the nagano
podium skating figure” has the information items the list of this words:

– nagano, the host town of the Olympic Games
– podium, the information to display about this Olympic Games. In this

case, all the four specific probes of the figure skating have a particular
information to display: the three medals (name of the medal’s winner,
specific country, type of the medal) not necessarily in this order.

Open-Source, Cross-Platform Java Tools 109

Fig. 2. The spoken command: ”show the nagano podium skating figure”

Those information items are then transform in a particular query for the
Jess’s knowledge base. The dialogue state includes the system’s current query
and its current belief on what has already been stated by the user.

The core of our speech understanding module has a sub module for parsing
the speech input and extract the meaningful words. One important point in
our application is that the speech understanding module contain application
specific knowledge information, that increase the speech understanding module
performance. A different ideea to improve the quality is that our application
reject an utterance if the word sequence of information items is incorrect.

6 FUTURE WORKS

In the light of a dialogue system implementation, the following steps concern
the improvements that should be done on our application.

– One important goal of our application is to be able to extend an existing
domain of the knowledge base (e.g. figure skating - Olympic Games results)
or to add a new one, with as little manual work as possible. This involves
new methods to populate the knowledge base (the deffacts data structure
of the .clp file). Using spoken commands to populate the knowledge base
is a challenging goal.

– Future improvements will also include some work on the dialogue man-
ager, so this one will change the recognition lexicon and JSGF grammar
depending on the dialogue flow.

110 O. NICOLAE

Fig. 3. The spoken command: ”show the winners from Japain”

– Speech understanding technology module of our application requires some
explicit semantic analysis and interpretation. Theoretically, speech under-
standing technology is substantially more complex and problematic issue,
but practical procedures for improvements of speech understanding tech-
nologies, are not yet well established. Our future work on this feature will
try to accomplish this task.

References

[1] N. Ţăndăreanu, Digital Signal Processing - Lecture Notes, 2005, University of
Craiova

[2] E. J. FriedmanHill. Jess, The Rule Engine for Java Platform,
http://herzberg.ca.sandia.gov/jess/docs/70/.Version 7.0b7

[3] J. Morris, Jess and the Art of Rule-Based Computing,
http://www.jessrules.com/zen.shtml

[4] E.J.Friedman-Hill, Jess in Action, Manning Publications, 2003
[5] FreeTTS - A Speech synthesizer written entirely in Java language programming,

http://freetts.sourceforge.net/docs
[6] The Recognition Engine : Sphinx-4,

http://cmusphinx.sourceforge.net/sphinx-4

