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Abstract. The paper present a genetic algorithm to simulate p53/mdm2
complex genetic regulatory response, in order to maximize the apop-
totic effect of the oscillatory characteristic of this complex on tumor
cells. The evolutionary method presented suggest a medical strategy in
cancer treatment.
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1 INTRODUCTION

The p53 gene is a tumor-suppressor gene (Vogelstein et al., 2000 [8]) and has
been described as “guardian of the genome”. It is known to play a vital role
in the cell because when it is not functioning correctly results cancer; p53 is
dysfunctional in the majority of cancer types, and greater than 18000 different
p53 mutations have been found in cancers (Bode and Dong, 2004 [2]). The p53
protein is the major node of a network that works to apply the “brakes” on cell
multiplication and in certain cases causes apoptosis. It’s primary function is to
act as a transcription factor. In a normal unstressed cell the concentration of
p53 is kept very low. When stress occurs, the members of the network interact
to produce a 3-10 fold increase in the concentration of activated p53. This
process is very quick with p53 levels increasing within minutes and the first
apoptotic events occurring within a few hours in some cell types.

Because some of the cellular effects of activated p53 can be irreversible,
keeping p53 function under tight control in normal cells is critical. A key player
in the regulation of p53 is the Mdm2 protein. Inactivation of the mdm2 gene
in mice results in early embryonal lethality (Vogelstein et al., 2000 [8]). Con-
ceivably, in the absence of functional Mdmd2 protein, p53 becomes strongly
deregulated to the extent that its excess activity leads to embryonic death. On
the other hand, excessive Mdm2 expression can lead to constitutive inhibition
of p53 and thereby promote cancer without a need to alter the p53 gene itself.
Mdm2 exhibits a dual relationship with p53 .

A qualitative study of the time dependence of the concentration of p53
and mdm2 has been carried out in reference [3]. Approximately one hour after
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the stress event (i.e., the DNA damage), a peak in the concentration of p53
is observed, lasting for about one hour. This peak partially overlaps with the
peak in the concentration of mdm2, lasting from ≈ 1.5 to ≈ 2.5 hours after the
stress event. Another small peak in the concentration of p53 is observed after
several hours.

This paper use a simple mathematical model of the p53-Mdm2 feedback
loop. The purpose of this work is to simulate the gross mechanisms of p53-
Mdm2 interactions as presently known, using a computational adaptative in-
vestigation. In particular, I show that specific assumptions characterizing the
interactions between p53 and Mdm2 lead to an oscillatory behavior of both p53
and Mdm2 protein levels after a sufficiently strong damage signal. In agree-
ment with this simulation, the levels of both proteins are shown to oscillate in
irradiated cells. Such oscillation may enable the more effective execution of a
reversible p53 response.

2 THE MATHEMATICAL MODEL

The mathematical model used was first proposed by [1] and use a simplified
description of the p53-Mdm2 interaction. The negative effect of Mdm2 on p53
protein level and activity includes:

– the inhibition of p53 transcriptional activity and
– the promotion of p53 degradation, mediated through the binding of Mdm2

to the p53 protein.

Activated p53, in turn, up-regulates Mdm2, by enhancing the transcription of
the mdm2 gene.

The model of p53/mdm2 complex is sketched in Fig. 1. The total number
of p53 molecules, produced at constant rate S, is indicated with p. The amount
of the complexes built of p53 bound to mdm2 is called pm. These complexes
cause the degradation of p53 (through the ubiquitin pathway), at a rate a, while
mdm2 re–enters the loop. Furthermore, p53 has a spontaneous decay rate b.
The total number of mdm2 proteins is indicated as m. Since p53 activates the
expression of the mdm2 gene, the production rate of mdm2 is proportional
(with constant c) to the probability that the complex p53/mdm–gene is built.
We assume that the complex p53/mdm2–gene is at equilibrium with its compo-
nents, where kg is the dissociation constant and only free p53 molecules (whose
amount is p− pm) can participate into the complex.

The protein mdm2 has a decay rate d. The constants b and d describe not
only the spontaneous degradation of the proteins, but also their binding to
some other part of the cell, not described explicitly by the model. The free
proteins p53 and mdm2 are considered to be at equilibrium with their bound
complex pm, and the equilibrium constant is called k.
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Fig. 1. A sketch of the mechanism which control the amount of p53 in the cell, as
described in [1]. The grey crosses indicate that the associated molecule leaves the
system.

The dynamics of the system can be described by the equations

∂p

∂t
= S − a · pm− b · p (1)

∂m

∂t
= c

p(t− τ)− pm(t− τ)
kg + p(t− τ)− pm(t− τ)

− d ·m

pm =
1
2

(
(p + m + k)−

√
(p + m + k)2 − 4p ·m

)
.

In the second equation it was allowed a delay τ in the production of mdm2,
due to the fact that the transcription and translation of mdm2 lasts for some
time after that p53 has bound to the gene.

The choice of the numeric parameters is somewhat difficult, due to the lack
of reliable experimental data. The degradation rate through ubiquity pathway
has been estimated to be a ≈ 3 · 10−2s−1, while the spontaneous degradation
of p53 is d ≈ 10−4s−1 [2]. The dissociation constant between p53 and mdm2
is k ≈ 180 (expressed as number of molecules, assuming for the nucleus a
volume of 0.6µm3), and the dissociation constant between p53 and the mdm2
gene is kg ≈ 28 (see [1]). In order to normalize the values for the protein
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production rates, it was used typical values, namely S = 1s−1 and c = 1s−1.
The degradation rate of mdm2 protein has been chosen of the order of d =
10−2s−1 to keep the stationary amount of mdm2 of the order of 102.

The stationary condition for equation 1 without delay can be found by the
intersection of the curves

m(p) =
c(a + b)p− cs

d(a + b)p− d(S − akg
(2)

mk(p) =
(S − bp)((a + b)p + ak − S)

a((a + b)p− S)
, (3)

which have been obtained by the conditions ṗ = ṁ = 0, explicitating pm
from the first of equations 1 and substituting it in the second and the third,
respectively. To be noted that mk is linear in k.

The variation ∆p of the stationary value of p53 upon change ∆k in the
dissociation constant can be found keeping that

dp

dk
=

dp

dm

dmk

dk
≈ d(S − bp)

ckg(a + b)
, (4)

where the approximation kg ¿ p has been used. Consequently,

∆p =
d(S − bp)
ckg(a + b)

∆k, (5)

which assumes the largest value when p is smallest. Using the parameters listed
above, the proportionality constant is, at most, 10−2.

The feedback mechanism that involves the proteins p53 and mdm2, induces
cell death as a controlled response to severe DNA damage. The response takes
place if the dissociation constant k between p53 and mdm2 varies from its
normal value.

The dynamics of the system 1 modify qualitatively in function of the nonzero
delay τ . Using as reference the halflife of an RNA molecule, with is of the
order of 1200 s (from [3]), we consider τ = 1200. The equations 1 are solved
numerically, starting from the conditions p(0) = 0 and m(0) = 0 and making
use of a variable–step Adams algorithm (implemented in Mathematica 5.0).
After the system has reached its stationary state under basal condition, a stress
is introduced (at time t = 20000 s) by changing instantaneously the dissociation
constant k. In Fig. 2 it was displayed a case in which the stress multiplies k by
a factor 15 (a), a case in which it divides it by a factor 15 (b) and by a factor
50 (c).

The stress model is a pulse of signal that can represent a short exposure
of cells to DNA damaging agents: UV or ionizing radiation (IR). The effect
of a stress pulse is differentiated in function of the tumor fitness of the cell,
increasing the dissociation constant k in the normal case and decreasing it in
the tumor case.
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When k is increased by any factor, the response is very similar to the re-
sponse of the system without delay ( Fig. 2a), characterizing a normal cell. On
the contrary, when k is decreased the system displays an oscillatory behavior,
as in the case of a tumor cell. At the value k ≈ 0.1, for example, the system
has a marked response (see also Figs. b and c). The maximum of the first
peak takes place approximately 1200s after the stress, which is consistent with
the lag–time observed in the experiment [3], and the peaks are separated from
≈ 2300s. A strong variation of the concentration p of p53 gene induce apoptotic
cell death as a regulatory response of the p53/mdm2 complex.

We consider the problem of separating the cancerated cell using a stream
of short stress radiation impulses ut, of intensity q(t), in order to amplify the
effect described in the b. case from before, kipping alive the rest of the normal
cells. But increasing the level of radiation produce severe damages to all the
cells, so the problem is reduced to maximize the variation of p, with a low level
of radiation. In mathematical terms, we wish to maximize the function

f(k) =
∂p
∂t∑
t q(t)

(6)

using an evolutionary algorithm.

3 EVOLUTIONARY ALGORITHM

Systems based on evolutionary algorithms [4] maintain a population of potential
solutions to the problem and apply some selection process based on the quality
or fitness of individuals, as natural selection does. The population is renewed
by replacing individuals with those obtained by applying “genetic” operators
to selected individuals. The most usual “genetic” operators are crossover and
mutation. Crossover obtains new individuals by mixing, often in some prob-
lem dependent way, two individuals, called parents. Mutation produces a new
individual by performing some kind of random change on an individual. The
production of new generations continues until resources are exhausted or until
some individual in the population is fit enough. Evolutionary algorithms have
proved very useful as search and optimization methods.

In our case, individuals represent sequences of stress pulses produced by
repeated exposure to different levels of radiation. Then, the individuals of our
evolutionary algorithm could be represented as the list

Q= q1 q2 · · · qn

Each stress pulse produce a perturbation in the stationary solution by the
modification of the level of dissociation constant k, as described in [1]:

∆k =
c1q(t)

1− c2pm
(7)
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where c1 is a proportionality constant and c2 is a small constant.
As the fitness function of individual sequences we take a variation of the

function f from 6:

f(k) =
max(∂p

∂t )∑n
t=1 qi

(8)

where the calculus of max(∂p
∂t ) use the numerical method of Adami, imple-

mented in Mathematica 5.0.
The first step of an evolutionary algorithm is the creation of a population of

individuals, or potential solutions to the problem. In our case, these individuals
represent a set of sequences variable level of stress pulses. The simplest way of
creating one such sequence is to random choose the values qi between 0 and a
maximum, normalized here, level 1. The number of the pulses is fixed from the
beginning (n = 20), and the time between two pulses was taken constant and
equal at the halflife of an RNA molecule: 1200 s.

The results of an EA are usually sensitive to settings such as the population
size, the number of generations and the rates of application of the crossover
and mutation operators.

We have implemented the classic one point crossover, which creates two
offspring by combining two individuals in such a way that the first part of one
parent up to a crossover point is combined with the second part of the other
parent and vice versa. Afterwards, the best offspring substitutes the worst
parent. This is a steady state, elitist strategy. The selection of parents pairs are
randomized.

The mutation operator is applied to every individual of the population with
a probability given by the mutation rate pmut. The mutation operator modify
one of the pulse of a stream Q arbitrary between 0 and 1.

4 EXPERIMENTAL RESULTS

Numerical solution of the model equations suggest that, under certain condi-
tions, p53 and Mdm2 undergo damped oscillations after a damage signal (as
see in Fig. 2). After 200 ”generation” of different stress stream, the winning
strategy to maximize the variation of oscillations consist of an initial maximum
pulse of stress at t = 0, repeated at an interval of the order of dt = 5 hours.
The result depend strongly on the time delay τ .

It is seen that after the initial pulse, both p53 and Mdm2 levels increase
several-fold with respect to their basal levels, to which they return after the
damage signal is resolved. A time delay can be seen between the peaking of p53
and Mdm2 levels. (In this particular example, Mdm2 peaks with a delay of one
h relative to p53’s maximum.) For the solution proposed by the Evolutionary
algorithm, maximum peak values p∗ and m∗ for the amount of p53 and mdm2,
respectively, calculated with τ = 1200s, is presented bellow.
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k p∗ m∗

1 47.3 33.6
1.8 49.5 36.8
3 63.9 52.4
15 858.3 96.7
19 287 99.3
180 632 99.6

In order to have a peak which is comparable with those observed experimentally,
the dissociation constant between p53 and mdm2 has to decrease of a factor
15, and the maximum effect take place after 20 hours from the first irradiation
pulse.

The numerical experiment was repeated 5 times, with similar results.
In conclusion, the method described in this paper confirm numerically that

the delay is an essential ingredient of the system to have a ready and robust
peak in p53 concentration as response to a damage stress, and suggest a medical
future utilization of the p53/mdm2 complex oscillations.
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Fig. 2. The response in the concentration of p53 (solid line) and mdm2 (dotted line)
upon variation of the dissociation constant k.


