
A Practical Evaluation of Security Patterns

Spyros T. HALKIDIS, Alexander CHATZIGEORGIOU, George
STEPHANIDES

Department of Applied Informatics
University of Macedonia, Thessaloniki, Greece
halkidis@java.uom.gr, {achat,steph}@uom.gr

Abstract. Software security has attracted the attention of researchers
in the area of security during the last years due to the proven fact that
most attacks to businesses and organizations exploit software vulner-
abilities. Moreover, the need to impose some level of security already
at the design phase has been recognized. Therefore, software design
patterns with the target of enhancing the security of software systems,
already at design, have been proposed. These patterns are called secu-
rity patterns. In this paper we evaluate common security patterns with
respect to the STRIDE model of attacks by examining the attacks per-
formed to two different systems: one without security patterns and one
properly using them.

Keywords: Software Security, Security Patterns

Math. Subjects Classification 2000: 94A60, 14G50, 68Q99

1 INTRODUCTION

The high importance of software security to the process of ensuring some level
of security to real systems has been evident since it has been discovered that
most attacks to the systems exploit software vulnerabilities [22, 8, 7]. These
vulnerabilities stem from software poorly designed and developed. Furthermore,
it has been shown that the earlier we incorporate security into a system the
better [22]. Therefore, the incorporation of a level of security already at the
design phase is desirable. To achieve this, in analogy to design patterns [6] in
software engineering, that aim to make software well structured and reusable,
security patterns [20, 2] have been proposed. Security patterns are reusable
solutions to common security problems that aim at imposing some level of
security to software systems, already at the design phase.

In this paper, we try to practically examine the resistance to STRIDE [8]
attacks of a small subset of security patterns that are commonly used in web
applications. To perform this evaluation, we have built two systems one with-
out security patterns and one using them, studied these systems under known
categories of attacks to web applications [17] and determined which aspects
of security are enhanced through the use of each security pattern used in the
second system. To study these systems under known attacks, we have used two



38 S. T. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

different approaches. First of all, we used the AppScan web application pen-
etration testing tool [23] and secondly we have organized a contest to study
other approaches that aim to evaluate software systems in terms of security
vulnerabilities. Finally, based on our findings we determined to what extent
each security pattern protects us from each category of STRIDE [8] attacks.
Based on the fact that we can not quantify in strict terms the security of a sys-
tem [7] levels of security ranging from absolutely low to absolutely high have
been used in the analysis instead of exact numbers. The experimental evalua-
tion shows that each security pattern protects us from different categories of
attacks and therefore a smart combination of these security patterns, based on
the resistance of each pattern to each category of attack, can lead to systems
that are secure enough already from their design.

2 DESCRIPTION OF THE SYSTEMS UNDER
EXAMINATION

In order to practically examine the robustness of various security patterns to
known attacks we have developed two systems. The first system, hereafter
denoted as ”first” application, is a typical e-commerce application with no
usage of security patterns where various sources for attacks were deliberately
included. The second system, hereafter denoted as ”second” application is a
variant of the first application, where the sources for attacks where not removed,
but security patterns were used to protect against the attacks.

Both applications under examination are typical J2EE (Java 2 Enterprise
Edition, now referred to as Java EE) [15]. We have chosen J2EE as a platform
for both applications since J2EE is widely used for business applications and
is useful from the security point of view [20, 3].

The architecture of a typical J2EE system is shown in Figure 1.

Fig. 1. A typical J2EE Architecture

The client, typically a web browser, accesses the Web Tier where servlets
reside. Servlets can forward requests to Enterprise Java Beans (EJBs), that



A Practical Evaluation of Security Patterns 39

when needed access the database. We have used JBoss 4.0.3 [10] as an applica-
tion server, for the web and business tier and MySQL 5.0 [14] for the database
tier.

The first system consists of 46 class. It has 16 servlets and 7 EJBs.
We have deliberately included in this system several sources for attacks.
First of all three sources for SQL injection were included in this application

[17, 1, 19, 5]. An SQL injection attack occurs when an attacker is able to insert a
series of SQL statements in a query formed in an application, by exploiting non
existence or of validation of data or improper validation of data [1]. An SQL
injection attack can cause unauthorized viewing of database data and database
modification.

Additionally, eleven sources for cross-site scripting were included. A cross-
site scripting attack [17, 4, 18, 9], also known as an XSS attack, occurs when not
properly validated data input in one page are shown in another. In this case,
script code can be input in the former page to be consequently executed in
the latter. In this way it is easy to perform and Information Disclosure attack
[8] for example by inserting javascript code in the former page, that shows
cookie values containing sensitive information, such as credit card numbers in
the latter.

Furthermore, a source for HTTP Response Splitting [11] was included.
HTTP Response Splitting attacks occur when user data that were not properly
validated are included in the redirection URL of a redirection response, or when
improperly validated data are included in the cookie value or name, when the
response sets a cookie. In both cases it is easy to create two responses instead
of one by manipulating headers. In the second response, an XSS attack can be
performed [11].

Furthermore, there was no SSL connection used in the first application,
having as result that the credentials and a cookie value containing credit card
information could be eavesdropped.

Finally, six servlet member variables race conditions were included, which
could be exploited by having a number of users acting simultaneously. However,
the information contained in these variables was not sensitive and therefore the
merits of such an attack would not be high. A summary of the security vulner-
abilities present in the first application is shown in Figure 1.

Type of vulnerability Number of sources for attack
SQL Injection 3

Cross-Site Scripting 11
HTTP Response Splitting 1

Servlet member variable race conditions 6
Eavesdropping 3

Table 1. Summary of Vulnerabilities present in the first application.



40 S. T. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

In the second application, the sources for attacks were not removed, but
security patterns were added to the application instead. The second application
consists of 62 classes. It has 17 Servlets and 9 EJBs. The security patterns
that were added in this system are one instance of the Secure Proxy pattern,
Login Tunnel variant [2], one instance of the Secure Pipe pattern, seventeen
instances of the Secure Logger pattern, Secure Log Store Strategy, a twenty
one instances of the Intercepting Validator pattern, and nine instances of the
Container Managed Security pattern [20]. In Figure 2. we show a block diagram
of the main components of the system, the security patterns used and the points
where the user can login or inputs data, since these are the most crucial points in
terms of security. The diagram does not show the Secure Pipe pattern, because
it encompasses the whole application, since the whole application uses SSL.
Additionally, it does not show the Secure Logger pattern because all servlets
use it, nor the Container Managed Security Pattern since all EJBs make use of
it.

Fig. 2. Block diagram of the second application under examination

3 EVALUATION OF THE SYSTEMS AND THE
SECURITY PATTERNS USED WITH REGARD TO
ATTACKS

In order to evaluate the two systems under known attacks we have used different
approaches. First of all we have used Watchfire’s AppScan [23] web application



A Practical Evaluation of Security Patterns 41

penetration testing tool. Secondly, we have initiated a contest in various news-
groups, where the participants performed attacks to the systems we described
earlier. This contest was was by Benjamin Livshits from Stanford University,
who used static analysis tools described in several papers [12, 13] to find the
security flaws existing in the applications.

Both approaches found the major security flaws of the first application,
meaning the three SQL Injection and the eleven Cross-Site Scripting vulner-
abilities. However, both approaches had several false positives. AppScan for
instance found sources for buffer overflows, while java was used and the static
analysis approach found sources for SQL Injection in the second application by
examining the code for the EJBs while proper input validation was done by
patterns in the Web Tier. Race conditions for servlet member variables were
found only by the static analysis approach. Minor application errors that pose
no threat to security not found by the static approach, were found by AppScan
(like lack of checking for proper session variable value ranges). AppScan found
the unencrypted login request flaw in the first application that did not use
SSL. AppScan also found unencrypted SSL parameter flaws in the second ap-
plication, which in our case are of minor importance, because the unencrypted
parameters in the URLs are not crucial. The HTTP reponse splitting source in
the first application was found by neither of the approaches.

Additionally, the security flaws found by both approaches were fewer in
the second application in comparison to the first one. The higher number of
security flaws in the first application was much more prominent in the set of
high risk flaws.

The previous analysis of the results shows that proper use of the security
patterns leads to the remediation of all major security flaws. The flaws that are
not confronted are those of minor risk, like unencrypted SSL parameters (this
flaw is of minor risk only when the unencrypted parameters are not crucial like
in our case), and servlet member variable race conditions (this flaw is of minor
risk when the variables for which the race conditions occur are not crucial).
These flaws that remain even after the use of security patterns, exist because
existing security patterns do not confront these kind of problems.

The Intercepting Validator pattern, when used for all input, including ses-
sion variables that are not input by the user but still posted, protects from SQL
Injection, Cross-Site Scripting and HTTP Response Splitting attacks. There-
fore, it offers high protection against Tampering with Data and Information
Disclosure attacks [8].

The Secure Proxy pattern, Login Tunnel variant, has two levels of authen-
tication in order to protect from Spoofing Identity, Elevation of Privilege and
Information Disclosure attacks. Its resistance to related attacks can be esti-
mated by considering it to be equivalent to the existence of two guards [2]
connected in a series. The resistance of this pattern to attacks is dependent to
the resistance of each guard to dictionary attacks. Specifically, in order for both
guards to be compromised, two consecutive dictionary attacks to the authenti-
cation mechanism of a guard must succeed. Recent studies [24, 16], have shown



42 S. T. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

that dictionary attacks, with a usual distribution of the complexity of the pass-
words selected, succeed 15-20% of the times. The authentication mechanism of
a guard can still be marked as of high security.

All authentication patterns and consequently the Protected System [2] and
the Secure Proxy pattern should be resistant to eavesdropping attacks to serve
their purpose. Thus, they should always be used together with the Secure Pipe
pattern that provides an implementation of the SSL protocol [20]. The Secure
Pipe pattern offers protection from information disclosure attacks. The pro-
grammer can still use unencrypted parameters in an SSL request, but usually,
when these parameters are of minor importance, this kind of flaw is of minor
risk.

The Container Managed Security Pattern implements an authorization mech-
anism. It protects from Elevation of Privilege, Information Disclosure and
partly from Spoofing Identity attacks, since anyone who belongs to the role
allowed to access the EJB protected can do so [20].

Finally, the Secure Logger pattern protects from tampering the log that was
created.

Based on the above analysis that offers us a practical a practical exami-
nation of attacks to systems without and with security patterns we can make
conclusions about the resistance to known categories of attacks [8] of the se-
curity patterns under consideration. The results are summarized in Table 1.
Irrelevant entries to the specific security pattern are left blank.

S T R I D E

Intercepting Validator very high very high

Guard of Secure Proxy with Secure Pipe high high high

Container Managed Security medium very high very high

Secure Logger very high

Table 2. Resistance of the security patterns examined against STRIDE at-
tacks.

4 CONCLUSIONS AND FUTURE WORK

In this paper we have estimated the resistance of specific security patterns
against STRIDE [8] attacks. In order to achieve this we have built two systems,
one without these security patterns and one using them and have studied these
systems under two methodologies of evaluation: Web Application Penetration
Testing and Static Analysis of code. Based on the results of the evaluation
estimates of the resistance of each pattern to each category of STRIDE attacks.

Future work includes proposing new security patterns for the security flaws
that our analysis showed that existing security patterns do not confront, build-
ing a mathematical model for the security of systems using security patterns,
and development of a tool that based on the security patterns present in the



A Practical Evaluation of Security Patterns 43

design of a system can make rough estimates about the security of the system
already from its design.

Acknowledgements
We would like to thank the Web Application Security mailing list of Securi-
tyFocus and the comp.lang.java.security mailing list, as well as their members
for letting us organize a contest. Furthermore we would like to thank Benjamin
Livshits from Stanford University, the winner of the contest. Finally, we would
like to thank Watchfire Corporation for providing us an evaluation license for
AppScan.

References

[1] C. Anley, Advanced SQL Injection in SQL Server Applications, NGSSoftware
whitepaper, 2002

[2] B. Blakley, C. Heath and Members of the Open Group Security Forum,
Security Design Patterns, Open Group Technical Guide, 2004

[3] C.A. Berry, J. Carnell, M.B. Juric, M. M. Kunnumpurath, N. Nashi
and S. Romanosky, J2EE Design Patterns Applied, Wrox Press, 2002

[4] Cgisecurity.com, Cross Site Scripting Questions and Answers,
http://www.cgisecurity.com/articles/xss-faq.html

[5] S. Friedl, SQL Injection attacks by example,
http://www.unixwiz.net/techtips/sql-injection.html

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns, Ele-
ments of Reusable Object-Oriented Software, Addison Wesley, 1995

[7] G. Hoglund and G. McGraw, Exploiting Software, How to Break Code, Ad-
dison Wesley, 2004

[8] M. Howard and D. LeBlanc, Writing Secure Code, Microsoft Press, 2002
[9] D. Hu, Preventing Cross Site Scripting Vulnerability, SANS Institute whitepa-

per, 2004
[10] JBoss Home Page, http://www.jboss.com
[11] A. Klein, Divide and Conquer, HTTP Response Splitting, Web Cache Poisoning

Attacks and Related Topics, Sanctum whitepaper, 2004
[12] B. Livshits and M.S. Lam, Finding Security Vulnerabilities in Java Applica-

tions with Static Analysis, In Proceedings of the 14th USENIX Security Sympo-
sium, 2005

[13] B. Livshits and M.S. Lam, Finding Security Vulnerabilities in Java Applica-
tions with Static Analysis, Stanford University Technical Report, 2005

[14] MySQL Home Page, http://www.mysql.com
[15] E. Roman, R.P. Sriganesh and G. Brose, Mastering Enterprise JavaBeans,

Third Edition, Wiley Publishing, 2005
[16] B. Ross, C. Jackson, N. Miyake, D. Boneh and J.C Mitchell, Stronger

Password Authentication Using Browser Extenstions, In Proceedings of the 14th

USENIX Security Symposium, 2005
[17] J. Scambray and M. Shema, Hacking Exposed Web Applications, McGraw-

Hill, 2002
[18] K. Spett, Cross Site Scripting, Are your Web Applications Vulnerable, SPI Labs

whitepaper



44 S. T. HALKIDIS, A. CHATZIGEORGIOU, G. STEPHANIDES

[19] SPI Labs, SQL Injection, Are Your Web Applications Vulnerable?, SPI Labs
whitepaper

[20] C. Steel, R. Nagappan and R. Lai, Core Security Patterns, Best Practices
and Strategies for J2EE, Web Services and Identity Management, Prentice Hall,
2006

[21] D. Spinellis, Code Quality: The Open Source Perspective, Addison Wesley,
2006

[22] J. Viega and G. McGraw, Building Secure Software, How to Avoid Security
Problems the Right Way, Addison Wesley, 2002

[23] Watchfire Corporation, http://www.watchfire.com
[24] T. Wu, A Real World Analysis of Kerberos Password Security, In Proceedings

of the 1999 Network and Distributed System Symposium, 1999


