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Abstract. The paper proposes a first attempt to approach regression
from the perspective of the novel technique of evolutionary support vec-
tor machines (ESVMs). ESVMs have been developed with the aim of
providing a simpler architecture as compared to their canonical coun-
terpart. As a consequence, they inherit the training mechanism of SVMs
but approach the resulting optimization problem through evolutionary
algorithms. In this paper, ESVMs for proposed task are built upon the
classical learning engine of ε-SVMs for regression. The validation of
the new approach on a set of 2-dimensional points once again demon-
strates the advantages of ESVMs as well as their promise as concerns
this particular pattern recognition case.
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vector machines, 2-dimensional points data set.
Math. Subjects Classification 2000: 68T05, 68T20, 92D10.

1 INTRODUCTION

Evolutionary support vector machines (ESVMs) [9], [10] are a novel learning
paradigm based on the well-known and highly used technique of support vector
machines (SVMs).

The reason for their development was that of bringing an easier alternative
to the complicated mathematical procedure of solving the optimization problem
that is reached by the learning mechanisms of SVMs. In order to determine
the optimal learning function, ESVMs propose evolutionary algorithms (EAs)
instead.

ESVMs have until now successfully addressed only classification tasks. It is
the aim of present paper to prove that they are also competitive for regression
issues.

ESVMs for regression inherit the engine of one classical technique in this re-
spect, i.e. ε-SVMs, and estimate the regression coefficients through a canonical
EA.

The paper is structured as follows. Next section presents the basic ideas
behind SVMs. The third section briefly sketches the changes that are brought
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by ESVMs. Section 4 outlines the concepts specific to ε-SVMs for regression.
Section 5 describes proposed application of ESVMs to the regression case. Ex-
periments on a set of 2-dimensional points are illustrated in section 6. In the
final section, conclusions are reached and implications for future work are pre-
sented.

2 SUPPORT VECTOR MACHINES. AN OVERVIEW

SVMs are a very powerful state-of-the-art learning technique that primarily
targets classification and regression tasks.

A possible definition of SVMs can be stated as in [4]: ”a system for effi-
ciently training linear learning machines in kernel-induced feature spaces, while
respecting the insights of generalization theory and exploiting optimization the-
ory”.

SVMs exhibit the mechanism that is typical to any machine learning tech-
nique. Given a training set {(xi, yi)}i=1,2,...,m, where every xi ∈ Rn represents
a data sample and each yi a target, a training stage deals with the internal dis-
covery and learning of the correspondence between every sample xi and given
target yi.

That implies that, given a family of functions {ft∈T |, ft : Rn → D}, the
task consists in learning the optimal function ft∗ that minimizes the discrep-
ancy between the given targets of data samples and the actual targets produced
by the learning machine; the aim is then to find the optimal parameter t that
corresponds to the appropriate learning function. According to what has been
learnt, a test step is finally responsible for the prediction of targets for previ-
ously unknown samples.

Remark: If classification is envisaged, the domain D of the targets is dis-
crete; conversely, if regression is considered, D is continuous.

The task of SVMs for classification is to achieve an optimal separation of
given data into classes. SVMs regard learning in this situation from a geometri-
cal point of view, i.e. they assume the existence of a separating surface between
two classes labelled as -1 and 1, respectively. The aim of SVMs then becomes
the discovery of the appropriate decision hyperplane, i.e. the detection of its
optimal coefficients.

On the other hand, the standard assignment of SVMs for regression [11] is
to find the optimal function to be fitted to the data such that it achieves at
most ε deviation from the actual targets of samples; the aim becomes thus to
estimate the optimal regression coefficients of such a function.

3 EVOLUTIONARY SUPPORT VECTOR MACHINES

Although a very competitive learning technique, SVMs have a highly compli-
cated mathematics behind their engine. Concepts of convexity and an exten-
sion of the method of Lagrange multipliers according to Karush-Kuhn-Tucker-
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Lagrange conditions are used in order to solve the constrained optimization
problem that is reached by the learning mechanism.

The novel ESVMs [9] have therefore been proposed as a technique that,
by means of EAs, provides a simpler alternative to this complex mathematical
procedure. Subsequently, it has been observed that the method gains another
advantage over canonical architecture, i.e. ESVMs determine the coefficients of
the learning function in a direct fashion, which is generally not possible with
SVMs.

ESVMs have been developed such as to inherit the training procedure of
SVMs but to embed an EA [5] at the level of solving the optimization problem.
So far, they have been designed and applied only for classification [9], [10].

4 SUPPORT VECTOR MACHINES FOR
REGRESSION

Present paper proposes the first attempt of an ESVM approach for regression,
which is chosen to be constructed through the hybridization between EAs and
the standard ε-SVMs.

Recall the training environment {(xi, yi)}i=1,2,...,m, where every xi ∈ Rn

represents a data sample and each yi ∈ R a target. Such a data set could
represent exchange rates of a currency measured in subsequent days together
with econometric attributes [8] or a medical indicator registered in multiple
patients along with personal and medical information [1].

ε-SVMs for regression aim at determining the optimal coefficients of the
function to be fitted to the training data while they allow for errors that are
less than ε and, simultaneously, request high generalization ability, i.e. they
require the function in question to be as flat as possible [7], [8].

The learning mechanism takes place as follows [8]. The first step is to observe
if a linear regression model can fit the training samples. Accordingly, function
f that suits data takes the form (1):

f(x) = 〈w, x〉 − b, (1)

where w ∈ Rn is the slope of the regression hyperplane and b ∈ R is the
intercept.

The requirement that f approximates training data with ε precision is writ-
ten as (2):

{
yi − 〈w, xi〉+ b ≤ ε

〈w, xi〉 − b− yi ≤ ε
, i = 1, 2, ..., m (2)

Conversely, the condition for a flat function is equivalent to demanding
smallest slope, i.e. w, which leads to minimizing its squared norm ‖w‖2.

The task of linear ε-SVMs for regression is thus stated as the optimization
problem (3):
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find w and b as to minimize ‖w‖2

subject to

{
yi − 〈w, xi〉+ b ≤ ε

〈w, xi〉 − b− yi ≤ ε.
, i = 1, 2, ..., m (3)

If a linear function f cannot match all training data, ε-SVMs will allow for
some regression errors with the condition that they are in a minimal number
[2], [6]. Therefore, the positive indicators for errors ξi and ξ∗i , both attached to
each sample, are introduced into the condition for approximation of training
data which becomes (4):

{
yi − 〈w, xi〉+ b ≤ ε + ξi,

〈w, xi〉 − b− yi ≤ ε + ξ∗i .
, i = 1, 2, ..., m (4)

Simultaneously, the sum of indicators for errors, C
∑m

i=1(ξi + ξ∗i ), is mini-
mized. C symbolizes the penalty for errors.

The task of linear ε-SVMs for nonlinear regression is thus stated as the
optimization problem (5):

find w and b as to minimize ‖w‖2 + C

m∑

i=1

(ξi + ξ∗i )

subject to





yi − 〈w, xi〉+ b ≤ ε + ξi

〈w, xi〉 − b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

, i = 1, 2, ...,m (5)

If a linear function still fails to satisfactorily fit training data, a nonlinear
function has to be chosen. The procedure is as follows [3]. Data is mapped
via a nonlinear function into a high enough dimensional space and linearly
modelled there as previously. This corresponds to a nonlinear function in the
initial space.

Hence, data samples are mapped into some Euclidean space H through
a function Φ : Rn 7→ H. Therefore, the optimization problem in H has the
formulation (6):

find w and b as to minimize 〈Φ(w), Φ(w)〉+ C

m∑

i=1

(ξi + ξ∗i )

subject to





yi − 〈Φ(w), Φ(xi)〉+ b ≤ ε + ξi

〈Φ(w), Φ(xi)〉 − b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

, i = 1, 2, ..., m (6)
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Nevertheless, the choice of a function Φ with required properties is not an
easy task. However, as in the training algorithm vectors appear only as part of
dot products, if there were a kernel function K such that K(x, y) = 〈Φ(x), Φ(y),
where x, y ∈ Rn, one would use K in the training algorithm and would never
need to explicitly even know what Φ is.

The kernel functions that meet this condition are given by Mercer’s theorem
from functional analysis [2]. Still, it may not be easy to check whether the
condition is satisfied for every new kernel. There are, however, a couple of
classical kernels that had been demonstrated to meet Mercer’s condition [2].
The most commonly used ones are the polynomial kernel of degree p, K(x, y) =

〈x, y〉p, and the radial kernel of parameter σ, K(x, y) = e
‖x−y‖2

σ .
The task of nonlinear ε-SVMs for regression is thus stated as the optimiza-

tion problem (7):

find w and b as to minimize K(w, w) + C

m∑

i=1

(ξi + ξ∗i )

subject to





yi −K(w, xi) + b ≤ ε + ξi

K(w, xi)− b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

, i = 1, 2, ..., m (7)

Once training of ε-SVMs is completed, the predicted target for test samples
is computed following obtained learning function that may either refer the
found coefficients or, as usually w and b cannot be directly determined, some
other variables derived from mathematical artifices.

5 EVOLUTIONARY SUPPORT VECTOR MACHINES
FOR REGRESSION

Training in ε-ESVMs for regression follows the same steps as in the canoni-
cal technique. The components of the EA to solve the inherent optimization
problem were experimentally chosen as follows.

REPRESENTATION OF INDIVIDUALS. An individual encodes the
regression coefficients together with the indicators for errors of regression (in-
cluded for reasons of reference in the EA formulation of the optimization prob-
lem), i.e. is a vector of w, b, ξ and ξ∗ (8):

c = (w1, ..., wn, b, ξ1, ...., ξm, ξ∗1 , ...., ξ∗m) (8)

INITIAL POPULATION. Individuals are randomly generated following a
uniform distribution, such that wi ∈ [−1, 1], i = 1, 2, ..., n, b ∈ [−1, 1] and ξj

and ξ∗j ∈ [0, 1], j = 1, 2, ..., m.
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FITNESS EVALUATION. The fitness function is derived from the ob-
jective function of the optimization problem and has to be minimized. Con-
straints are handled through penalizing the infeasible individuals by appointing
t : R → R which returns the value of the argument if negative, while otherwise
0. The expression of the fitness function is considered as follows (9):

f(w1, ..., wn, b, ξ1, ..., ξm, ξ∗1 , ..., ξ∗m) = K(w, w) + C

m∑

i=1

(ξi + ξ∗i )+

m∑

i=1

[t(ε + ξi − yi + K(w, xi)− b)]2 +
m∑

i=1

[t(ε + ξ∗i + yi −K(w, xi) + b)]2, (9)

One is led to:

minimize (f(c), c). (10)

GENETIC OPERATORS. Tournament selection is used. Intermediate cross-
over and mutation with normal perturbation are considered. Mutation is re-
stricted only for ξ and ξ∗, preventing the indicators for errors from taking
negative values.

STOP CONDITION. The algorithm stops after a predefined number of gen-
erations. In the end, one obtains the optimal estimated regression coefficients,
i.e. w and b, which are subsequently applied to the test data.

PREDICTION OF TEST SAMPLES. Given a test data sample x, its
predicted target is computed following (11):

f(x) = K(w, x)− b (11)

6 EXPERIMENTAL RESULTS. APPLICATION TO A
2-DIMENSIONAL POINTS DATA SET

A fictitious training data set of points in a 2-dimensional environment was
considered in order to validate the novel ε-ESVMs for regression. The data set
was chosen as in Figure 1.

A polynomial kernel was chosen as it achieved the best results in preliminary
experiments. The values that were appointed for the specific parameters of
support vector machines and evolutionary algorithms are given in Table 1.

Illustration of obtained regression model is depicted in Figure 1. In the plot,
the squares are the actual data points and the line denotes the function that
was fitted to the data.
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Table 1. Values for parameters of ε-ESVMs for regression

Parameter Manually picked value
C 1
ε 0
p 2
Population size 100
Number of generations 100
Crossover probability 0.3
Mutation probability 0.4
Mutation probability of indicators for errors 0.5
Mutation strength 0.1
Mutation strength of indicators for errors 0.1

Fig. 1. Training samples (squares) and function that was fitted to data by ε-ESVMs

7 CONCLUSIONS AND FUTURE WORK

Present paper constitutes the first approach of the novel technique of ESVMs to
the regression case, which is achieved through the hybridization between EAs
and the classical ε-SVMs engine. Validation of the new approach is performed
on a data set of 2-dimensional points.

Obtained regression model proved to perform well for the given task, in
addition to the fact that, in comparison to SVMs, ESVMs have a simpler
nature and a direct handling of the learning function through its coefficients.

As concerns future work, it would be interesting to attempt a second ap-
proach of ESVMs to regression, through inheriting the training engine of an-
other classical technique, i.e. ν-SVMs.
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