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Abstract. Present paper extends previous work concerned with the
development of a classification system based on the coevolution metaphor.
Since cooperation has proved to successfully achieve proposed task, we
investigate whether competition is also a potential alternative and com-
plement. Validation on one real-world and two benchmark data sets
seems to confirm a future potential of this opposite approach.
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1 Introduction

According to the Darwinian principles, an individual evolves through the
interaction with the environment. However, a significant segment of its sur-
roundings is, in fact, represented by other individuals. As a consequence, evo-
lution actually implies coevolution. This interactive process may assume either
collaboration towards the achievement of a specific mutual purpose, or, on the
contrary, competition for the common resources in the spirit of the survival
of the fittest. Accordingly, two kinds of artificial coevolutionary systems exist:
cooperative and competitive, respectively. In cooperative coevolution, collabo-
rations between two or more individuals are necessary in order to evaluate one
complete potential solution, while in competitive coevolution, the evaluation
of an individual is determined by a set of competitions between the current
individual and several others.

Classification has been previously targeted by a cooperative system [11],
[12], [13]. A potential solution was regarded as a set of IF-THEN conjunctive
rules in first order logic and learning was driven by the cooperation between
rules towards a complete and accurate rule set. The current work proposes to
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embrace the opposed manner of addressing the task by considering the com-
petition between rules and training samples in the direction of extensive and
hard testing on each side. The aim is to observe if or how can a competitive
classifier be comparable to the current successful cooperative algorithm.

The paper is organized as follows. In the next section the competitive
paradigm is outlined and explained. Section three describes the proposed man-
ner of approaching classification from the competitive point of view. Experi-
ments on three data sets, two benchmark and one real-world, together with a
comparison to the corresponding results of the cooperative approach are de-
picted in section four. The ideas are concluded in the last section.

2 Competitive coevolution

Within the competitive model [8], the complementary evolution between
species is achieved through an inverse fitness interaction process. This implies
that success attained on one side is regarded as failure among the individuals
of the other side; the latter species will have to react in order to maintain its
chances of survival.

Competitive coevolution represents a predator-prey complex: The strong
evolutionary pressure determines the prey to defend itself better while, as a
response, the predator develops better attacking strategies. This results in a
stepwise adaptation and complexity of involved species. Therefore, the com-
petitive interaction between species represents the force that drives evolution
forward.

Accordingly [9], one species corresponds to certain tests a solution must
satisfy and the other to the potential solutions for the given task. Compe-
tition is achieved through encounters between one individual from the tests
population and one from the solution species. The two selected individuals are
checked against each other and, if the solution passes the test, then the for-
mer is rewarded while the latter is penalized; if it fails, credits are assigned
in a reverse manner. Moreover, each individual has a history of its encounters
which embodies the penalizations/rewards it has received. The fitness of the
individual is computed on this basis, as the sum of its most recent behaviours
(successes/failures).

An important remark is that, since tests are a priori defined, it is only the
population of potential solutions that evolves; the opposite species contains
the same individuals (tests) until the end of the evolutionary process. The only
fluctuation that appears within the latter population solely regards the ranking
of the individuals according to fitness (their satisfiability hardness). It must be
however noted that, in certain cases when tests cannot be exhaustively given,
the tests population may also evolve.

Canonical competitive coevolution can be described as in Algorithm 1.

The initial evaluation of the individuals in both populations is based on the
results of random encounters between solutions and tests.
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Algorithm 1 A canonical competitive coevolutionary algorithm
t — 0;
randomly initialize solutions population Popsoi(t);
create history and evaluate individuals in Popgo(t);
create history and evaluate individuals in Popres:(t);
while termination condition = false do
te—t+ 1
for i = 1, 2, ..., number of encounters do
select solution from Popse(t — 1);
select test from Popres:(t — 1);
obtain result from encounter between solution and test;
update history and evaluation of solution according to result;
update history and evaluation of test according to result;
end for
select two solutions from Popger(t — 1);
apply variation operators to obtain one offspring;
evaluate offspring;
Popsoi(t) < Popsei(t — 1)
insert offspring into Popge(t);
end while

When such an encounter takes place, only the current individual is rewarded
/ penalized without the inverse score attribution for its competitor happening
as well.

An evolution cycle is then entered. A predefined number of encounters be-
tween solutions and tests takes place. Those opposite individuals that meet
are decided following a ranking selection. As a result, the fittest solutions and
tests are more frequently involved in such ”tournaments”: The best perform-
ing solutions must prove their superiority more often, while, concomitantly,
the algorithm focuses upon the most difficult tests. As soon as the reward/pe-
nalization is established for the two selected competitors, their corresponding
history is updated: The score of the most recent encounter replaces that of the
oldest one and evaluation is revised.

After the considered encounters are finished, a single offspring is created.
Two parents are selected according to the same selection scheme and recom-
bination and mutation on the resulting solution are subsequently applied. A
personal history of the offspring is created through a number of encounters
equal to the defined history length. The tests are again selected according to a
ranking scheme. Following such an encounter, only the history of the offspring
is modified; unlike a standard encounter between a solution and a test, no si-
multaneous penalization /reward of the involved test is conducted. This stems
from the simple reason that a mediocre offspring might lead to an unreliable
change in the behaviour of the considered test. After the offspring is evaluated,
it will replace the weakest individual in the solutions population.
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During the entire evolutionary process, the tests population suffers no vari-
ation.

The two species thus evolve together, through the inverse fitness interaction
mechanism: As soon as the potential solutions satisfy certain tests, the latter
receive a weaker evaluation score which leads to omission from further selection.
As a result, other more difficult tests are subsequently more often selected for
tournaments, while the solutions must evolve to adapt to the new requirements
that must be fulfilled.

The parameters that are associated with competitive coevolution are the
history length of an individual (the number of meetings that provide a measure
of its performance) and the number of encounters between solutions and tests
within an evolutionary cycle.

The importance of the personal history is manifold [8]. For one, it offers a
continuous evaluation of an individual. Then, its partial nature leads to a major
decrease in the computational expense of testing a potential solution against
all the given tests, while it offers dynamics and keep of pace between the two
species.

The competitive paradigm has been applied to a wide range of problems,
i.e. path planning [6], constraint satisfaction [5] and classification. As classifi-
cation is concerned, known techniques involve the evolution of neural networks
[4], decision trees [10], cellular automata rules [2], [7] and the use of genetic
programming for the problem of intertwined spirals [3]. Again, it has to be
stated that to the best of our knowledge, the competitive coevolution between
simple IF-THEN rules and the training set has not been achieved yet.

3 Competitive coevolution for classification

Classification can assume different characterizations, however herein it is
regarded from a general point of view. Given {(x;,y;)}i=12,..m, & training set
where every x; € R" represents a data sample (values that correspond to a se-
quence of attributes or indicators) and each y; € {1,2,...,p} represents a class
(outcome, decision attribute), a classification task consists in learning the opti-
mal mapping that minimizes the discrepancy between the given classes of data
sample and the actual classes produced by the learning machine. Subsequently,
the learnt patterns are confronted with each of the test data samples, without
an a priori knowledge of their real classes. The predicted outcome is then com-
pared with the given class: If the two are identical for a certain sample, then
the sample is considered to be correctly classified. The percentage of correctly
labelled test data is reported as the classification accuracy of the constructed
learning machine.

Within proposed competitive approach, the population of tests is repre-
sented by the samples in the training data, while the other population, that of
solutions, will contain only the rules that are to be evolved.
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3.1 Training stage. The evolutionary algorithm behind

The task is to build p rules, one for each class. Consequently, in order to
form a solution to the classification problem, a complete set of rules has to be
selected from the solutions population, which must therefore contain rules for
every outcome.

Representation. A rule is considered to be a first logic entity in conjunctive
form, i.e.:

if (a1 = Ul) A (a2 = UQ) VANAN (CLn = U,L) then class k

where aq,as,,...,a, are the attributes, vy,vs,,...,v, are the values in their
domain of definition and £k =1,2,....p.

As a result, an individual has the form, ie. ¢ = (¢1, c2, ..., ¢ | k), k& =
1,2,...,p.

Initialization. As previously stated, at least p rules have to be obtained.
Recombination will take place only between individuals with the same outcome,
therefore, the size of the solutions population has to be of at least 2p individuals,
i.e. differentiating two individuals per class. However, we only state here the
minimum size of the rules population; a higher number of individuals would
obviously bring a better covering of the search space.

Fitness evaluation. For each individual and for each sample from the tests
population, we have to construct a history of the scores they obtained during
encounters. The actual fitness evaluation of each individual/sample will be
equal to the sum of all scores in their history.

The main question is: How are the scores given? When an encounter between
a rule and a sample takes place, the distance (we used the same normalized
Manhattan distance as before) between them is computed. The task for the
rules is to be as similar as possible to the samples in the training set, therefore
the aim is to minimize the distance between them and the samples from the
training set with the same outcome. The score that is attached to a rule is given
by the negative value of the distance; the maximum score a rule aims to attain
is thus 0, meaning that the rule is identical to the sample it encountered.

Conversely, for a sample in the tests population, we attach the actual value
of the distance between it and the rule that it met. As rules get closer to
a certain pattern of samples, they will subsequently encounter other samples
that have larger fitness values (and as a consequence higher chances of being
selected for encounters) because they are very different from those rules. Thus,
new fitter samples are continuously selected in order to adapt the rules so that
they will resemble them too, i.e. evolve the solutions according to a high variety
of tests.
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Immediately after the initialization of the rules population, the fitness eval-
uations for both the rules and the samples have to be computed. In this respect,
for each rule, a sample with the same outcome as its label is randomly selected
and the encounter takes place: This has to be performed for a number of times
equal to the history length. Each individual will thus posses a history and, as
a result, an evaluation. In a similar manner, for a number of times equal to
the history length, each sample from the training set will be considered and
random individuals with the same outcome are selected in order to form the
encounters that will complete their histories.

After the initial fitness calculation, each time an encounter takes place,
solutions and samples are chosen from each population by means of ranking
selection. As encounters take place only between solutions and samples with the
same outcome, they will occur separately and in turn for each class (Algorithm
2). After the encounter, the new score is added to the history queue and the
oldest score is removed, such that the same history length is maintained.

An individual that is obtained after the variation operators is evaluated as
follows: for a number of times equal to the history length, a sample with the
same outcome as its own is selected using ranking selection and encounters
take place. Its fithess may now be computed by summing all the scores in the
history. It is then included in the population by replacing the individual with
the worst fitness evaluation.

Algorithm 2 The competitive coevolution approach to classification
t — 0;
randomly initialize solutions population Popsoi(t);
create history and evaluate individuals in Popso(t);
create history and evaluate individuals in Popres:(t);
while termination condition = false do

t—1t-+1;
for j = 1, 2, ..., number of classes do
for i = 1, 2, ..., number of encounters do

select solution labelled by j from Popse(t — 1);
select test labelled by j from Poprest(t — 1);
obtain result from encounter between solution and test;
update history and evaluation of solution with -result;
update history and evaluation of test with +result;
end for
select two solutions with class j from Popgei(t — 1);
apply variation operators to obtain one offspring;
evaluate offspring;
insert offspring into Popsei(t);
end for
end while
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Selection and variation operators. In our experiments we only tried the
ranking scheme, as it is usually advised in the general framework of competitive
coevolution.

As regards the variation operators, intermediate recombination and muta-
tion with normal perturbation were employed. Recombination takes place only
between individuals within the same class and, therefore, the offspring inherits
the outcome of the parents. The mutation operator does not apply to the class
gene.

We cannot imagine any obstacle for using any other recombination or mu-
tation operators [1].

Remark: Variation and replacement take place for every class in turn (Al-
gorithm 2).

Stop condition. Competitive techniques usually require more iterations than
a canonical EA, as in each generation there is only one new descendant that
enters the population. However, in our approach for classification, we apply
the variation operators for individuals of every class in the same generation, a
change that makes several individuals (descendants), i.e. p instances (one for
each class), enter the population within that iteration.

The stop condition we used refers to a fixed number of generations.

3.2 Competitive coevolution parameters

There are two important parameters related to the competitive coevolution
technique: The history length and the number of encounters that take place
within one generation. The larger the values for both of them, the more accurate
the fitness evaluation is for an individual /sample. Unfortunately, together with
the raise in the values for either of the two, the runtime of the algorithm also
increases.

The value for the number of encounters parameter directly depends on the
population size of the two species: If there are many individuals in any of the
populations, then a high value for the number of encounters have to be set in
order to update the fitness evaluations of a great amount of the individuals.

A value that is too small for the history length parameter could make the
fitness evaluation of an individual/sample change too drastically after each en-
counter and thus the fitness evaluation would not objectively reflect the quality
of the individual /sample in contrast to the other population.

3.3 Test stage. Rules application

After the evolutionary process stops, one rule for every class is selected and
these are applied to the test set. For each sample in the test set, the dissimilarity
to each of the rules is computed. The found outcome of the sample is taken
from the rule it resembles the most.
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4 Experiments

Two data sets concerning benchmark classification problems coming from
the University of California at Irvine (UCI) Repository of Machine Learning
Databases!, i.e. Wisconsin breast cancer diagnosis and iris recognition, are
selected for reasons of validation and comparison. Besides, the former is a
two-class instance, while the latter represents a multi-class task, which should
reveal whether the classification algorithms remain flexible and feasible with
some increase in the number of outcomes.

Finally, a real-world data set, courtesy of the University Hospital in Craiova,
Romania, is also considered with the purpose of testing and application on an
unpredictable environment that is usually associated with raw data. For all
grounds mentioned above, the selection of test problems certainly contains a
variety of situations that is necessary for the objective validation of proposed
competitive approach in application to classification.

In all conducted experiments, for each parameter setting, the training set
is formed of randomly picked samples and the test set contains the rest of
the samples. In order to prove the stability of the approaches, each reported
average result is obtained after 30 runs of the algorithm.

The experiments section is organized as follows: A small description of each
data set is first outlined; it is then continued with the results obtained for our
competitive algorithm. The section closes by undertaking a comparison to the
accuracies obtained by the cooperative counterpart on the same problems.

4.1 Data sets description

The significant information on the each of the considered classification tasks
is given in the following lines.

Breast cancer diagnosis. The data set contains 699 observations on nine
discrete cytological factors and reflects a chronological grouping of the data.
The objective is to identify whether a sample corresponds either to a benign
or a malignant tumour. Class distribution is 65.5% for benign and 34.5% for
malignant. There are 16 missing values for attribute 6; we replaced them by
the average value for that attribute.

Iris plants classification. There are 150 samples with three possible classes
pertaining to this data set. Each sample consists of four attributes which denote
the length and width for petals and sepals of the iris flowers. Samples are equally
distributed among classes.

! Available at http://www.ics.uci.edu/~mlearn/MLRepository.html



36 C. STOEAN, R. STOEAN, M. PREUSS, D. DUMITRESCU

Hepatic cancer early diagnosis. Hepatocellular carcinoma (HCC/hepatoma)
is the primary malignancy (cancer) of the liver that ranks fifth in frequency
among all malignancies in the world. In patients with a higher suspicion of
HCC, the best method of diagnosis involves a scan of the abdomen, but only
at a high cost. A cheap and effective alternative consists in detecting small
or subtle increases for serum enzymes levels. Consequently, based on a set of
fourteen significant serum enzymes, a group of 299 individuals and two possible
outcomes (HCC and non-HCC), we aim to provide an efficient computational
means of checking the consistency of decision making in the early detection of
HCC at significantly low expense.

4.2 Competitive classification validation

Pre-experimental planning: Only the two benchmark data sets from the
UCI repository were used for preliminary experiments. The first observation
in these tests refers to the high amount of time necessary for the algorithm
to run: The explanation lies in the fact that the tests population is very large
and, at the beginning of the evolutionary process, all samples are evaluated.
This means that for each sample, for a number of times equal to the history
length, an individual is selected and an encounter takes place between the two,
assigning a score to the sample.

We also noticed at this stage the importance of the two competitive co-
evolution parameters: history length and the number of encounters. They also
significantly influence the runtime of the program that implements the algo-
rithm. However, a more exact evaluation of an individual or sample is obtained
if the history length value is large and, on the other hand, a high value for the
number of encounters updates the evaluations of individuals/samples.

Task: It will be investigated if the competitive classification technique can
perform as well as the cooperative approach.

Setup: The values for the parameters were manually tuned and are indicated
in Table 1.

In the current experiment, in order to enhance the speed of the algorithm,
we tried to reduce the population size as much as possible: Less individuals
means they will have more encounters with samples from the other species and
their fitness will be updated very often.

None of the considered data sets was normalized.

Results: The average results that were obtained after 30 runs by applying the
competitive classification technique are illustrated in Table 2.

Observations: The average results show that the competitive approach is sig-
nificantly weaker than the cooperative one (Table 2). Not only the final results
prove that this approach is much poorer than the cooperative one, but there is
also a great difference as concerns runtime: To make an objective comparison,
we measured the average runtime for the same breast cancer data set, by using
the competitive approach with the parameters indicated in Table 1.
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Table 1. Parameter values for the competitive coevolution approach

Breast Cancer Iris Hepatic Cancer

Evolutionary Parameters

Population size 100 50 100
Mutation probability 0.5 0.5 0.4
Mutation strength 8 1 10
Generations 100 300 150

Competitive Coevolution Parameters

History length 30 30 30
Number of encounters 20 30 20

Table 2. Average results after 30 runs for the competitive coevolution approach
compared to its cooperative counterpart

Data set Competition Cooperation
Breast cancer 92.9% 94.5%
Iris 91.1% 95.4%
Hepatic cancer  84.7% 90.5%4

The obtained value was of around 480 seconds, that is almost 13 times slower
than the cooperative approach with a large number of collaborators.

The standard deviation of the results have also appeared to be significantly
higher, which indicates the fact that this technique is not as stable as the
cooperative approach. Nevertheless, it has to be stated that in an objective
judgement, there are not too many perturbations that appear in 100, or even
300 generations, since only two individuals per class recombine during one gen-
eration and mutation is applied solely to the obtained offspring. To conclude, at
least 1000 generations would probably be necessary for the variation operators
to considerably change the population. That would, on the other hand, slow
down the program even more.

Discussion: The obtained results and the large runtime of the competitive
technique indicate that it is not still a viable alternative to the previous coop-
erative approach. Note however that this is only the first time the competitive
approach for classification is proposed and we believe that it represents a good
starting point, as there is definitely potential within this technique as well. To
outline some ideas for future research concerning the competitive technique for
classification, perhaps a preprocessing technique step could be first applied to
the training data in order to substantially reduce them. In conjunction with
that (or by itself), we presume that employing a chunking technique in order
to pick only small parts from the training set and use them as the static species
could significantly improve runtime (maybe even the accuracy). Then, after the



38 C. STOEAN, R. STOEAN, M. PREUSS, D. DUMITRESCU

rules are specialized on the selected samples, the tests species could bring new
ones, while the dynamic population of rules could resume the evolution.

A important enhancement could be brought if the very good rules that are
evolved at a certain point could be blocked for further modifications: Make one
such individual a tabu rule and maybe move it in a rules archive that will be
applied when the termination condition is reached. In the way the technique
is now built, these good rules have the highest chances to be selected over and
over again, therefore modified many times, maybe for the worse.

In the end of the evolutionary run, the best rule of each class in the final
population was taken and the entire formed set was applied to the test data.
Obviously, a different way of choosing the rules could be imagined, e.g. take
several rules for one class or apply an archive variant as suggested above.

5 Conclusions

The presented competitive classification technique brings an interesting and
dynamic perspective of targeting classification. However, the method in its
current state did not prove to be as efficient as the cooperative approach,
probably due to the fact that the latter has been more extensively tested in
the past. Conversely, an important advantage of the competitive scenario over
the cooperative alternative is that the raise in the number of classes does not
target the automatic increase in the number of populations and thus complicate
the evolutionary system. Further study and enhancement will complete the
creation of a general coevolutionary framework that can provide new insights
and successes into the demanding and crucial field of classification.
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