Building the Supremum of Semantic Schemas
Endowed with Speech Synthesis Output

Claudia Alice STATE, Tonel IORGA

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
cldstate@yahoo.com, ioneliorga@yahoo.com

Abstract. We made this study in order to evaluate a implementation
which has, as output space for a semantic schema [1], speech synthesis.
Speech synthesis as output of a inheritance-based knowledge system
was treated in [11], for example. In literature, for semantic schemas,
other output spaces where employed, for example, finite sets of strings
corresponding to certain grammars rules of natural languages ([3],[6]),
the 2D geometric space([6],[4]). In particular, in our approach, the out-
put is generated in english language through the use of FreeTTS [7].
The implementation was made using an objectual language, a logic
programming language and a connection between them. In order to
make the elements of the interface the java language [9] was used. The
computability regarding checking for consistency of a semantic schema,
building the intermediary and final conclusions was made in swi-prolog
logic environment [8]. The jpl connection [10] was used in order to
made the java-prolog connection. The supremum of semantic schemas
([3],[4]) is built together with his associated interpretation, if the se-
mantic schemas have interpretations. This mean that we provide an
automatic method for building the supremum for any semantic schemas
which are properly encoded.

Keywords: semantic schema, speech synthesis, text-to-speech, objec-
tual programming, java prolog connection, java speech api, logic pro-
gramming

Math. Subject Classification 2000:68T30, 68T35, 68Q55, 68N17

1 Introduction

The concept of semantic schema was introduced in Tandareanu [1].
As in Tandireanu-Ghindeanu [2] we understand by a semantic 8 —schema a
system S = (X, Ap, A, R) which elements are denoted in the following manner:

e X a finite, non-empty set of symbols called object symbols

e Ay a finite, non-empty set of elements called label symbols

o Ay C AC Ag where Ay is the Peano 0-algebra [5] generated by Ay:
— AO = U”ZO An

Building the Supremum of Semantic Schemas 49

— Apy1={0(u,v) |u,v € Ap},n >0
— Ay is a finite and a non-empty set
— 6 a binary algebraic operation

e RC X x A x X is a non-empty set which fulfills the following conditions:

(z,0(u,v),y) € R— 3z € X : (v,u,2) € R, (z,v,y) ER (1)
O(u,v) € A, (z,u,2) € R, (2,v,y) € R= (z,0(u,v),y) € R (2)
proR= A (3)

e where pr; R is defined in the following manner

priR = {J,‘ S RL'|E|(J,‘1, ey Li—1, T, Tit1, ...J,‘n) S R} (4)

ifRCR; X..XxRyandi€{l,...n}

2 Interpretation of a semantic schema

Definition 1. (Tdnd&dreanu [6] p. 33):
Consider an interpretation Z = (Ob, 0b, { Alg, }nea) for S. The output space Y’
of S is defined as follows:

Y = Uyu (5)

u€cA

where
Yo = {Alga(0b(z),0b(y)) | (z,a,y) € Ro}
if a € Ag and
YO(u,v) = {Algt9(u,'u)(01»02) | 01 € Yu702 S YU}

where Alg is a set of algorithms with two input parameters and one output
parameter and Ryg = R x (X x Ay x X).

Remark.
If 7 is an interpretation of the semantic schema S then the output mapping

(Tandareanu [6] p. 34) is of the following form:

Outyr = X x X —2Y

50 C. A. STATE, I. IORGA

3 Building the supremum of schemas

In order to build the supremum of schemas, we use the following [4]:
Definition 3.
Consider the schemas S = (X, Ag, A, R) and P = (Y, By, B, Q). We define the
relation SCPif X CY and R C Q.
Proposition 1.
Consider the schemas S; = (X¢, A}, A%, R") such that A® is finite, i € {1,..,n}.
We denote X = JI_, X*, Ay =, A, A=, A" and
R =R N((X*x Ay x X?) fori € {1,..,n}.
The following sets are defined recursively:

Zy=R{U...URp
Ziv1=2Z; J{(z,0(u,v),y) € X x Ax X|3z: (z,u, z) € Zj, (6)
(Z,U,y)ezj},j ZO

If the semantic schemas have interpretations the interpretation of their
supremum is built upon their interpretation.
To be more exactly, the functions ob are compared and a new family of algo-
rithms {Alg, }uea is built. The resulted function ob should be also a bijective
one.
The supremum of semantic schemas has as components the set {X, Ag, A, R}
and as an interpretation 7 = (Ob,0b, { Alg, }uca), where R =J,,> Zn-
Remark.
It seems that from the definition of R, for the supremum of semantic schema,
determining it may result in an infinite process of computation. Practically
this is not true because we use, in our implementation, a fix point theorem like
method to ensure computation in finite steps.
Moreover from theoretical point of view, in [3] p.2 it is proved that Ing € N
such that

ZyCZyC oo Clpy = Zngt1 = - (7)

4 Implementation

The implementation of the deduction engine was made in a logic program-
ming language of type prolog and the interface was realised in a cross-platform
object oriented language.

In particular the swi-prolog language [8] was employed for the logic deriva-
tions and java language [9] was used for managing the user interactions with
the interface.

A java-prolog connection was used in order to take the inference results of
the logic program implemented in swi-prolog. In order to implement the java-
prolog connection the JPL [10] package was used. The JPL package comes with
the standard distribution of swi-prolog.

The swi-prolog language is a free, open source and cross-platform, so the re-
sulted java-prolog connection will also be.

Building the Supremum of Semantic Schemas 51

The java - swi prolog connection is a good tool, to build, and approximate so-
lutions of NP-hard [14] problems because uses the combined advantages of the
logic and objectual programming. Such a connection was used, for example, to
offer a solution to the problem of generating an universitary timetable in [13].
In order to manage the steps in building and running the application we use
Apache Ant [12] which is also, free, open-source and cross platform.

The documentation and regarding the java-swi prolog connection can be found
in swi-prolog installation directory, for example on windows systems the path
is pl/doc/packages/examples/jpl.

The locations of the java compiler and the swi-prolog executable must be found
by adding them to the path variable of the operating system. On windows sys-
tems this can can be achieved by editing the AUTOEXEC BAT file.

The part of the implementation written in swi-prolog application is modular
consisting in:

e cfg.pl- It’s a configuration file which containing the name of the knowledge
base used in the application.

e facts.pl - Is the knowledge base containing the semantic schemas. A se-
mantic schema is encoded through predicates which reflects the entities
which express it: {X, Ag, A, R, Ob, 0b, {Algy }ueca}

e sem.pl - Contains the predicates which verifies the conditions (1), (2),
(3) and compute Outz

. A user may want to modify the the informations contained in the knowledge
base files as long the rules from sem.pl remains true.
The java part consist from several packages as follows:

e gui - graphic user interface
SemSchFrame - the principal class that manages the interface
ChooseSch - implement a customized dialog. Instances of this class
are created whenever the confirmation and, also, other informations
from the user are needed.

e sui - speech user interface
Speech - contains methods to transform a text into speech using the
FreeTTS java package [7] which is an open-source implementation of
the Java Speech Api [15]

e semsch - the principal package of the java part of the application
SemSch - the main class containing an instance of a object of type
gui.SemSchFrame
Join - implements the necessary actions when the supremum of seman-
tic schemas is computed
JoinUtil - implements adjuvant methods to be called from the Join
class
SemSchPl- the class which contains the methods that make the calls
from java to prolog logic program in order to extract the conclusions
from the logic derivation using java prolog connection [10]

52 C. A. STATE, I. IORGA

OpenKB - read the content of the knowledge base into java environ-

ment

SaveKB - save the modified content of the knowledge base (for exam-

ple, after the supremum of semantic schemas is computed)

CloseKB - save and close the knowledge base

RUtil - methods for extracting elements of R in the java environment
e util - contains utility classes for workings with strings and the elements of

a semantic schema

StringUtil - utility methods over strings

ParseOut and ParseROut - implements utility methods in the pro-

cess of transforming the prolog of semantic schema entities representa-

tion to java

Through the use of this interface the advantages of a logic environment are
combined with the use of a object oriented platform.
The application functionalities are the following:

e the semantic schema proposed by the user is verified to be consistent,
in the sense of conditions (1),(2),(3), and, in order to compute Outz
(Tandareanu [6]),the interpretation of semantic schema is employed to-
gether with the necessarily formulaes. The computed conclusions are dis-
played in a text area of the user interface (Fig. 5).

e user choose two or more semantic schemas and the application computes
their supremum (Fig. 7)

By pressing the Speech text button (Fig. 4) the finite subset of the output
space, corresponding to the results from the text area, is spoken.

5 Tests and results

5.1 Distributed knowledge and reasoning by analogy

The use of distributed knowledge and reasoning by analogy is presented,
for example, in [3].
In the following example we consider two semantic schemas and we build their
supremum putting in evidence the use of distributed knowledge and the rea-
soning by analogy.
First we consider semantic schema S; from Figure 1:

X' = {x1, 23, 4,25}
Aé = {al,ag,ag}
Al = {al,ag,agﬂ9(&1,&2)79(9(a1,a2),a3)}
R'=RiURIUR;
R ={(z1,al,23), (x3,a2,z4), (r4,a3,25)}
R ={(z1,0(al,a2),74)}

Building the Supremum of Semantic Schemas 53

R = {(x1,0(0(al,a2),a3),z5)}
}-comp(Sl) = POI LJIPI1 UPQI
Pt = {h(x1,al,23), h(x3,a2,14), h(z4,a3,r5)}
Pl ={o(h(x1,al,x3), h(x3,a2,74))}
P ={o(o(h(x1,al,23), h(x3,a2,24)), h(x4,a3,x5))}

where h and ¢ are symbols of arity 1 and, respectively 2 (Tandédreanu [3]), used
for computing the intermediary set F,,,,,(S1) in order to determine Outz:.
We consider the following interpretation:

Tt = (Ob',0b*, {Alg. }ue ar)

Ob' = {John, Michelle, Dan, sportcar}

ob' = {(z1, John), (z3, Michelle), (x4, Dan), (x5, sportcar)}

o Algorithm Alg} (oby : String, ob, : String)
return ob;+" is a friend of ”+oby
e Algorithm Alg} (ob; : String, oby : String)
return ob;+” drives on the same car model of ”+oby
Algorithm Alg,_ (oby : String, obs : String)
return ob;+" drives a ”+oby
Algorithm Alg; o @)(obl : String, oby : String)
return ob;+" 1s a friend of a person which drives on the same car model
of ”+oby
Algorithm Alg;(e((oby : String, oby : String)
(0(a1,a2),a3) . .
return ob;+" 1s a friend of a person which drives on the same car model
of a person which drives a ”+oby

Remark:

the symbol ”+” represents the binary operator of concatenation over strings

Figure 1 :Schema S;

The second semantic schema (Sz) is presented in Figure 2:

X2 - {xlax27'r4}

54 C. A. STATE, I. IORGA

Af = {a1, a2}
A? = {al,GQ}
R® = R2

R3 ={(x1,al,22), (v2,a2,z4)}
}—comp(SQ) = 7)02
POQ = {h(xl,a1,$2),h(x2,a2,x4)}

If we consider the following interpretation Z2 = (Ob?, 0b?, { Alg2}.,c 42)
Obv? = {John, Clark, Dan}
ob? = {(z1, John), (z2, Clark), (x4, Dan)}

e Algorithm Alg? (ob; : String, obs : String)
return ob;+” is a friend of ”+o0bsy
e Algorithm Algg2 (oby : String, oby : String)
return ob;+” drives on the same car model of ”+o0by

Figure 2 :Schema S,

In Figure 3 the semantic schema (S3), corresponding to the supremum of
S1 and S, is presented:

X = {21,29, 23,74, 75}

Ag = {al,a2,a3}

A = {al,ag,a37 9(@1,@2)7 9(9(@1,@2),@3)}

R=RyUR:1UR:
Ry = {(x1,al,22), (z1,al,x3), (22,02, z4), (3, a2, x4), (z4,a3,x5)}
Ry ={(x1,0(al,a2),24)}
Ry = {(x1,0(0(al,a2),al),z5)}

}—comp(S) = POUPI UPQ
PO = {h(xl,al,xg),h(xl,al,xg),h(xg,ag,x4),h(xg,ag,x4),h(x4,a3,x5)}
Py = {o(h(z1,a1,22), h(x2,a2,24)),0(h(z1,a1,23), h(z3,a2,24))}
Py ={o(c(h(x1,a1,22), h(x2,a2,24)), h(z4,a3,25))}

Building the Supremum of Semantic Schemas 55

The corresponding interpretation is 7 = (X, ob, { Algy }uca)
Ob = {John, Clark, Michelle, Dan, sportcar}
ob = {(x1, John), (xq, Clark), (z3, Michelle), (x4, Dan), (x5, sportcar)}

e Algorithm Alg,, (oby : String, oby : String)
return ob;+” is a friend of ”+o0by
Algorithm Alg,,(oby : String, oby : String)
return ob;+” drives on the same car model of ”+o0by
Algorithm Alg,,(oby : String, oby : String)
return ob;+" drives a ”+oby
Algorithm Algg(q, q,)(0b1 : String, oby : String)
return ob;+" is a friend of a person which drives on the same car model
of ”+oby
Algorithm Algg(g(a, a.),a5)(0b1 : String, oby : String)
return ob;+" is a friend of a person which drives on the same car model
of a person which drives a ”+oby

Outz = {”John is a friend of Clark”, ”John is a friend of Michelle”, ”Clark
drives on the same car model of Dan”, ”Michelle drives on the same car model
of Dan”, ”"Dan drives a sport car”, ”John is a friend of a person which drives
on the same car model of Dan”, ”John is a friend of a person which drives on
the same car model of a person which drives a sport car”}

We denote the fact that the last two conclusions are not obtained in a unique
way.

Figure 3 :Schema S3

The main functionalities of the expert system are presented in the following
Figures:

56 C. A. STATE, I. IORGA

e Figure 4 - Represents the the dialog which ask for the the id of the
semantic schema in order to compute Outz

¢ Figure 5 - Shows the content of the kb file, in the upper text area, and
the elements of the Outz, in the bellow text area.

e Figure 6 - Presents the dialog which asks the number of semantic schemas,
and their id’s, for which the supremum is computed.

e Figure 7 - Express the state of the interface after the supremum of the
schemas is computed.

— =i

L

Cormpuks St |

Clear output I

4|
Enter the id of the schema S/ Ves I Mo I

| Dutpul SpEce.

Speech Eext |

Figure 4

& Semantic Schema with Speech Synthesis Dutput T = = =] =24 |
File Help

= eS|

| ob(l0,x1,'John']).

obild,x2,'Clark') .
ob(10,x4, "Dan').

2lg(l0,=1,01,02,0):—atom_concat{0l,' is =a friend of ',011),=atom
alg(l0,a2,01,02,0):—atom_concati{0l,' driwves on the same car mode.
alg(l0,a3,01,02,0): —atom _concat(0l,' drives a ',01l1),atomn concat

— Output space

John is a friend of Clark orat I
John is a friend of Michelle

Clark driwes on the sSame car model of Dan

Michelle drives on the same car model of Dan

Dan driwves a sSport car

John is & friend of =a person which drives on the same car model o

‘John is a friend of a person which drives on the same car meodel o

Clear output I

Figure 5

Building the Supremum of Semantic Schemas 57

Figure 6

The join semantic schema was generated in sem

Figure 7

58 C. A. STATE, I. IORGA

6 Conclusions and future work

The presented approach has proved her functionality. However, further im-
plementations, must consider other functionalities like exporting in other for-
mats the inference engine conclusions and the use as an output of a semantic
schema the romanian natural language.

As part of future work we consider the interrogation by voice of the expert
system which produces the output of the semantic schema in order to obtain a
complete system of communication by voice.

References

[1] N. Tandareanu:- Semantic Schemas and Applications in Logical Representa-
tion of Knowledge, Proceedings of The International Conference on Cybernetics
and Information Technologies,Systems and Applications: CITSA 2004, Orlando,
Florida.

[2] N. Tandireanu, M.Ghindeanu :- Properties of derivations in a Semantic
Schema, Annals of University of Craiova, Math. Comp. Sci. Series, 2006

[3] N. Tand&reanu :- Transfer of knowledge via semantic schemas, 9t World Mul-
tiConference on Systemics, Cybernetics and Informatics, July 10-13, Vol. IV, 2005,
70-75

[4] N. Tandareanu, M.Ghindeanu :- A three-level distributed knowledge system
based on semantic schemas, 16" Int. Workshop on Database and Expert Systems
Applications, Proceedings of DEXA ’05,Copenhagen, 2005, 423-427

[5] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu:- Lukasiewicz-Moisil
Algebras, Annals of Discrete Mathematics, 49, North-Holland, 1991

[6] N. Tandareanu:- Knowledge Representation by Semantic Schemas, Technical
Report, Research Center for Artificial Intelligence, Department of Computer Sci-
ence, University of Craiova, 2006

[7] ***:.- FreeTTS, http://freetts.sourceforge.net/docs/index.php

[8] ***:- Swi-Prolog, http://www.swi-prolog.org/

[9] ***:- Java Language, http://www.java.com/en/download/index.jsp

[10] ***.- JPL, http://www.swi-prolog.org/packages/jpl/java_api/index.html

[11] N. Tand&areanu:- VoSys: A System by Voice to Answer in Inheritance-Based
Knowledge Systems, 6" International Conference on Artificial Intelligence and
Digital Communications, Thessaloniki, Greece, Vol. 106, August 2006, 91-101

[12] ***.. Ant, http://ant.apache.org/

[13] I. Iorga:- Genetic algorithms, Logic programming and Java - Prolog connection
Applied to the University Timetable Scheduling, 5" International Conference on
Artificial Intelligence and Digital Communications, Craiova, Romania, Vol. 105,
September 2005, 96-107

[14] ***:.- http://en.wikipedia.org/wiki/NP-hard

[15] ***.- Java Speech Api, http://java.sun.com/products/java-media/speech/

