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Abstract. Starting with the description of an elliptic curve E it is
created a set of restrictions which helps to realize an implementation in
a real system of the theories concerning the infeasibility of the ECDL
problem. It is studied the non-singular elliptic curves case problem,
where the infeasibility of the attack is increased by the particularity
of the specific field. Also, there are presented the attack discussion of
elliptic curve discrete logarithm and the way to improve the attack
consistency.
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1 Introduction

Side-channel attacks rely on power consumption [8] and timing [7] as in-
dicators for complexity of computations required for point multiplication on
implementations of cryptosystems based on elliptic curves. The computational
issue here is obtaining a result of the form:

R = [e]P

where R is the result, [e] is a integer value, always secret, be it ephemeral or
long-term used, also e is considered to be the key, while P is a point on the
elliptic curve used with the cryptosystem.

The class of elliptic curves used in cryptographic applications requires that
they have a prime-order sub-group. The order of this sub-group is denoted by
P. The points of p order are used only.

Following measures can be employed to randomise computations and make
power analysis a harder task for the attacker:

o If the cryptosystem uses projective coordinates for point representation,
then the input point can be transformed in a random equivalent represen-
tation. ( projective coordinates is the most often choice because of efficiency
reasons [1],[5].
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e The product [e]P can be expressed using a random point Q as
R=[e](P-Q)+[Q
e The product [e]P can be expressed using a random integer n as
R =[e+np|P

" R =[e—n]P+[n]P

The inserted randomness considered above is meant to reduce the risk of dif-
ferential attacks, which use correlations from multiple computations. However
if direct interpretation of readings is possible above measures can become futile.
Simple side-channel analysis works with implementations that use a straight-
forward approach to point multiplication. This is because the bits of the integer
e leave quite an easy trace in the power consumption usage, which can be in-
terpreted, along with the fact that P is publicly available this leads to the
disclosure of the secret integer e if a double-and-add algorithm is used. Al-
gorithms like m-ary or sliding window method may obscure the bits of e but
according to [9] this may still reveal information.

Considering above issues, point representation seems the best solution at
hand. Liardet and Smart [9], and Joye and Quisquater [6] proposed a set of
curves and special representations that can be used in such manner that the
same formula can be used for both addition and multiplication operations.
Their solution however is not cost-effective and induces performance drawbacks.

In [10] the author proposes a point multiplication algorithm, which is im-
proved by Okeya and Sakuray in [12] and then is used in [13] for suitable curves
over odd characteristic fields, where the usual group operations are replaced
by certain special operations working with triplets of points with y-coordinates
omitted. This method makes the retrieval of bits from e much harder.

Details of the above methods are not discussed here, however they all have
the disadvantage of unusability with NIST and SECG recommended curves
from [11] and [2]. This leads to major drawbacks in what concerns interoper-
ability.

This paper proposes a method by which limitations of specific usage of
curves is removed by using a uniform pattern both for addition and multiplica-
tion. Because of this feature the method can help interoperability of systems.

The method uses more addition operations than the standard 2%-ary point
multiplication algorithm. Despite this, dummy additions used in other algo-
rithms to achieve a fixed pattern of point doubling and addition [4] are avoided,
reasons for this are given in next section.

Randomly choosing the integer e avoids failure of the considered method.
Failure occurs in cases where addition involves actually a point doubling or
the point at infinity. These situations are potentially clearly visible through
side-channel analysis.
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According to [13] methods of protection presented in the start of this section
can be combined with the use of projective coordinates. We also recommend
integrating the presented method with randomization techniques above men-
tioned.

2 Elliptic curves operations strength

Security analysis often uses a model in order to test side-channel informa-
tion leakage. While it is practically impossible to analyse all possible informa-
tion leakage, often this model is aimed at specific aspects, configurations or
implementations.

Before presenting the method, information leakage is considered at a lower
level. Subsection 2.1 discusses special cases of point operations that should
be avoided. Subsection 2.2 discusses the importance of using randomized pro-
jective coordinates and certain extended point representations. Also this sub-
section questions the insertion of dummy point additions to achieve uniform
behavior.

2.1 Point operations

Side-channel analysis is the operation which involves gathering of informa-
tion concerning timing of computations and power consumption of such op-
erations. Values that these indicators provide may be interpreted to obtain a
certain order of operations involved in a cryptosystem. To conceal this order
a careful devised algorithm should use point doubling and addition operations
in order to create a uniform pattern, which should be independent of the spe-
cific multiplier, used in considered operations. Of course there are exceptions,
and these situations should be treated in a special manner at the time of their
occurrence. These are presented in the following statements:

¢ Point doubling [2]A requires conditional statements for the case that A is
the point at infinity or that A is a point of order two. If these cases are
avoided, then, expressed in field operations, point doubling runs as a fixed
routine.

¢ Point addition A 4+ B requires conditional statements for the case that one
of the points is the point at infinity, or that A coincides with B, or that one
point is the inverse of the other. For other cases, it too can be implemented
as a fixed routine.

Details of the sequences of field operations used for point doubling and point
addition depend on the underlying field (odd characteristic vs. characteristic 2)
and the choice of point representations (e.g. either affine coordinates or one of
multiple styles of projective coordinates, according to [3]), so implementations
may vary widely. The essential observation is that the respective algorithm
always behaves the same as long as the above special cases are avoided.
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2.2 Finite field operations

An important observation is that when an attacker analyses the side-channel
information he does not have immediate access to the factors involved in a op-
eration. However it is prudent to say that not all operations look the same, and
this is the basic idea for side-channel attacks. Inserting randomization tech-
niques into one’s protocol or any other cryptosystem based on elliptic curves
is a good idea. This is combined with the usefulness of projective coordinates
[4],[13]. Take for example Jacobian projective coordinates, which are triplets
of the form (X,Y, Z) with Z = 0, they represent affine points (X/Z2,Y/Z3);
then for any field element ¢ # 0,(2X, €*Y, ¢Z) is a representation of the same
point on the curve. Randomization makes it difficult for an attacker to guess
the values obtained by using a randomly chosen e.

Point doubling or point addition using projective coordinates results in a
point represented with a Z-coordinate that is the product of the Z-coordinate(s)
of the input point(s) and a short polynomial involving one or more other co-
ordinates of the input points; thus the output point is again in a randomized
representation.

Randomization makes it difficult for an attacker to guess or imply that a
certain operation involving known points is taking place at a certain point in
time. Still the attacker may observe the same operation reoccurring if the same
field operation is executed several times throughout the computation. Even if
the attacker cannot obtain the factors involved in the operation we still want
to mask this as this in some cases may be considered an important information
leakage.

Point multiplication, R = [e] P, is performed in stages by a great part of
existing algorithms, these stages are as follows:

Precompute stage: First, independently of the specific multiplier e, certain
small multiples of P are computed and stored in a table.

Evaluation stage: Second, the product [e]P is evaluated as follows: A vari-
able A is initialized to one of the table values; then, many times, A either
is doubled or a table value is added to A, replacing the previous value of
A. Finally, A contains the result [e]P.

3 Implementation

In order to implements in calculation systems arithmetic in F), are used,
where p is a prime number, large enough to meet certain conditions required
by the present problem. The main problems under consideration refer to cal-
culation in F},: addition and multiplication. The latter is also the most difficult
to solve. In order to create an efficient algorithm in [14—16] we present methods
which start from a special p form i.e. p = ' — a, where a has a sufficiently
low value. The algorithm is based on multiplication subroutine, followed by
reduction subroutine such as
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Algorithm 1
1 qo — [@/b'],r0 — @ — qob, 7 1o, 0
2 while ¢; > 0 do
= qiv1 + @a/V'], rig1 — qia — g U
—t—i+ 1L r—r+mn
S whiler >pdor+—r—p

In this way the reduction function uses only shift operations, addition and
multiplication by a.

For the calculation of certain parameters found in the systems implemented in
practice, RNSA (Residue Number System Arithmetic) is used. This concept is a
rather old one and is based on CRT (Chinese Remainder Theorem). Therefore,
starting from the integer p, as defined above, we choose p; prime numbers, so
that

t
[1r: > »* (1)
=1

We will represent an element = modulo p as a vector (x1,... ,x:), where x =
x; (' mod p;). With this representation there can be made fast implementations
on calculating machines which use 32 or 64 bit-word one of this ways in which
such interpretation can be used is in trapdoor functions, applications of this
kind being found in the algorithms of Public-Key systems.

Another efficient method of implementing modulo a large prime p arithmetic
consists in using Montgomery representation [17] . Let be b the base in which
the system works. R and ¢ will be defined so that R = b* > p will made. We
conclude from this that which element = € F}, is represented by zR(mod p).
The reduction operation required by the multiplication process is based on the
result provided by Lemma 1

Lemma 1 Let be 0 <y < pR, u= —yp '(mod R) and

(y + up)
R

then x is an integer such that x < 2p and x = yR~*(mod p)

xr =

Also, the algorithm to compute the Montgomery reduction is:

Algorithm 2
1w+~ —yp Y(mod R)
2z (y+up)/R
Sifr>pthenx+—x—p
4 return x

In case of y = (Y2t—1,- -, Y1,Y0)mod b = Y2t—1b* L+ ...+ y1b+yo then we can
compute yR 1 (mod p) in the following way:
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Algorithm 3
1 fori=0tot—1
— u y;p’ (mod b)

— y—y+upb’
2 z+—y/R
Sifz>pthenz—z—p
4 return z
These calculi are made in case of p’ = —p~!(mod b). In order to find this one

it is necessary to compute x~(mod 2¥).

Algorithm 4
1y«—1
2 fori=2tow
— if 2071 < zy(mod 2°) then y «— y + 2071
3 return y

Another important aspect which must be taken into consideration is to solve
quadratic equation in modulo p finite fields. These are necessary for calculating
an y — coordinate of a point on the elliptic curve. It is found by starting from
the x — coordinate. The equation to be solved is of the type: % = a(mod p). In
order to taste that such an equation has a solution we will calculate Legendre

symbol (%), whose value will be 1 in case a is a square modulo p or the value
will be 0 in case a = 0(mod p). If we are in none of the above cases Legendre
symbol will be -1. The algorithm is presented below

Algorithm 5
1 if a=0 (mod p) the return 0
2x«—a,y—p, L—1
3z +— x (mod y)
4 if x> y/2 then
—r+—y—=x
— if y = 3(mod 4) the L +— —L
5 while x =0 (mod 4) do x «— z/4
6 if x =0 (mod 2) then
—x—uz/2
— if y =13 (mod 8) then L — —L
7 x =1 then return L
8 =3 (mod 4) and y =3 (mod 4) then L — —L
9 temp «— x
10 x vy
11 y « temp
12 go to 3
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During the computational process, the machine representation is made in
base 2, so that, in order to optimize the algorithms all necessary arithmetic must
be translated in the finite fields F5». Therefore, let be a quadratic equation

2’ +p3=0 (2)

in Fon, where its double square will be zq = ﬁanl. A nontrivial quadratic
equation 2?2 + z + 3 = 0 will have, in Fyn, a solution of the type zo = 7(5),

where
(n—1)/2

= > "~ 3)
j=0

Let be the matrix T = (T;;).

n—1
a1+2i=§ T;j0?, 0<i<n—1 (4)
j=0
2 n—1 . .
where (a,a?,0? ) ...,a? ) is a normal base in Fyn over Fy and o € Fy.

Troo(asa;) = 1iff i = j, Trye(2) is the trace of z € F, over Fy, with ¢ = 2".

4 Optimization in elliptic curves arithmetic

As the elliptic curves theory was founded a long time ago there is a large
variety of interpretations and also ways to solve them. Let be an integral of

type

dz
/ vV 43 — hg.l? - hg (5)

The inverse function of such an integral is called elliptic function. Let be two
constants o1 and as, a function and a double periodic function over R then
Weierstrass function will be of the type

(V) =47’ —a1y —ay (6)
This pair (v,+') will define a point on the curve
y? =423 — oz — s (7)
making an elliptic curve.

Definition 1 Let be p > 3 a prime integer. The elliptic curve y?> = x> +aqx +
g, defined over Z,, is the set of solutions (x,y) € Z, X Z, to the congruence

2:

y? = 2% + oz + s (mod p) (8)

where oy, ay € Zy, are constants such that 4o +27a3 20 (mod p) together with
a special point O called the point at infinity.
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As already described in section 2 the main problems are to define the addition
of two points in such a field and to make multiplications by a given integer of
a point on the elliptic curve. The problem of adding two points, be them A,
and A, is divided between x; = x2 and y; = y2 on the one hand and the other
cases on the other hand.

Lemma 2 Let E denote an elliptic curve given by
E: Yo+ a1 XY +a3Y = X34+ o X? 4+ auX + g (9)

and let Ay = (z1,y1) and Ay = (z2,y2) two points on the curve. Then

-4, = ($1, —Y1 — 1Ty — as) (10)
Set
P ek NN 1 Tk 5} (11)
Ty — T1 Ty — T1

where x1,xo satisfy the condition 1 # xo and, from this point we will have

_ 32} + 200m1 + oy — oqy;

(12)
2y1 + oy + a3

—3 Qo —
= Ty + ayxy + 20 — a3y - (13)
2y1 + oy + a3

In case of equality between x1 and xo and the points Ay # — Ay the addition of
these two points will be the point Az with the following coordinates:

T3 =X+ ad —ay— 21 — 29, Y3 =—(A+ay)z3 —7 — az (14)
Thus we will have

1. To = X1 and Yo = Y1- Then Al + AQ =0
2. Otherwise Ay + As = B, B(z3,y3) where

1,‘32)\2—131—.Iig,ygz)\(l‘l—l‘g)—yl (15)
and )
N = (y2 —y1)(we —x1) 1, Ar # Ag; (16)
(3.13% =+ a)(2y1)*1,A1 = AQ;

5 WEB attack study

This section concentrates on extending the attack of Girault and Misarsky’s
multiplicative attack on WEB RSA signatures with affine redundancy to a level
where we have the size of the message equal to one third of the RSA modulus
n. A multiplicative attack is an attack in which the redundancy function of a
message can be expressed as a multiplicative combination of the redundancy
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functions of other messages. With respect to this we search for four messages,
my, Mg, M3, My, which are at least one third of the size of the modulus n, and
verify the following equation

R(ml) R(mg) =

R(mg3) - R(m4) (mod n) (17)

Message mq, is the message whose signature will be forged, this can be done

by computing

R(mg)d . R(m4)d
R(mg)d

R(my)4 = (mod n)

From (17) we obtain:

(w-mi+a) (w-mg+a)=
(w-ms3+a)- (w-mg+a) (mod n)

Denoting P = a/w mod n, we obtain:

(P +ma) - (P+my) =
(P4+ms3) - (P4 my4) (mod n)

For the following substitutions

t= ms
Yy=mz —1Mg3 (18)
r=m1—1ms
2 =My — My — Mg+ M3
the following equation holds
(P+t)+a)-(P+1)+y) =
(P+t)-(P+t)+xz+y+z) (mod n)
which simplifies into
x-y=(P+t)- -z (modn) (19)

Next we need to determine the values x,y, z and ¢ with respect to 19. First, we
obtain two integers z and u such that

Pz =u (mod n)

1 1

. —nz <z<ns3
with 2
O<u<?2-n3

One solution is suggested by [18]. Finding a good approximation to the fraction
% can be done efficiently by developing it in continued fractions. This implies
using the extended Euclidean algorithm to P and n. A solution is found such
that |2| < Z and 0 < uw < U if Z-U > n, which is the case here with Z = n3

and U =2 -n3.
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We then select an integer y such that

wl=
@l

n3 <y<2-n

and ged(y, z) = 1. We find the non-negative integer ¢t < y such that:
t-z=—u (mod n)
which is possible since ged(y, z) = 1. Then we take
u+t-z

x=—§4n%
Y

and obtain
P.z=u=2xz-y—t-z(modn)

which gives equation (19), with z,y, z and ¢ being all smaller than 4 - n3. From
x,y,z,t we derive, using (18), four messages mq,ma, ms and my, each of size
one third the size of n:

my=x+t
mo=y+1
mgzt (20)

my=c+y+z+t

Since —n'/? < z < n'/3 and y > n'/3, we have y + z > 0, which gives using
u >0
u+t-(y+2) >
Yy
which shows that the four integers m1, m2, m3 and m3 are non-negative, and
we have

Tr+t= 0

R(my) - R(mz2) = R(ms) - R(my) (mod n)

The complexity of our attack is polynomial in the size of n.

6 Existence of selective forgery

The attack discussed in the previous section is existential which means that
the attacker needs to find the four messages required for forgery; if the messages
ma,m3, m4 do not exist then the attack is not possible. This section deals with
the possibility of a selective forgery attack, but in this case the attack no
longer runs in polynomial time. Let mgs be the message whose signature must
be forged. Letting x,y,z and t as in (18), we compute two integers z and u
such that

(P+1t) z=u (mod n)

1 1

. —nz < z<ns
with 2
O<u<?2-n3
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We then factor u, and try to write u as the product x -y of two integers of
roughly the same size, so that eventually we have four integers z,y, z,t of size
roughly one third of the size of the modulus, with:

x-y=(P+t)- -z (modn)
which gives again
R(my) - R(m2) = R(ms3) - R(my4) (mod n)

The signature of mg can now be forged using the signatures of mi,ms and
my. For a 512-bit modulus the selective forgery attack is truly practical. For
a 1024-bit modulus the attack is more demanding but was still implemented
with success.
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