Migration Algorithm for Mobile Agents

Claudiu-Tonut, POPIRLAN

Computer Science Department, University of Craiova
A.L. Cuza Street, No. 13, 200585 Craiova, Romania
popirlan@gmail.com

Abstract. The concept of mobile agent is defined in [1]. There are
autonomous objects that migrate from node to node of Internet and
provide to user which have executed themselves using database or com-
putation resources of clients connected by the network. To migrate the
mobile agent, it will be needed a virtual place so-called the mobile
agent system to support mobility. Mobile agent systems provide a vir-
tual place for migrating mobile agents under our basic ideal condition
that there are no faults on the systems or nodes, or include relevant

protocols.
Keywords: Artificial Intelligence, Mobile Agents, Mobile Agents Sys-

tem, Network, Tracy, Mobile Technologies.
Math.Subject Classification 2000: 68T30, 68140, 68T05

1 Introduction

The general structure of the paper is the following:

— The elaboration of migration algorithm: We propose migration algorithm
with reordering and backward recovery of the paths to guarantee the mi-
gration of mobile agents. The proposed algorithm not only affords to avoid
any faults of nodes or clients of mobile agents on network but also affects
to agents’ life span.

— An application: This uses the suggested algorithm and offers a strategy
with the simple techniques of path reordering and backward recovery to
migrate mobile agents.

— Open problems and future work. While a mobile agent is launched to spe-
cific nodes/clients according to relevant routing schedules, it is possible to
happen some problems about migration of mobile agent if the host happens
an accident within where the agent visits and executes. The protocol is for
detecting and processing what occurs any fault on migrating mobile agents.

However, it does not provide to guarantee migration reliability of mobile
agent. There is a simple protocol using transaction message queue, which is a
procedure that the sender puts messages in the queue and receiver gets mes-
sages. For example, assume that there is an agent in input queue of a host and
the node’s error occurs before the agent moves to queue of next node. Then
the agent is blocked until that the node is recovered. This situation differs from
problem in client/server.

110 C.-I. POPIRLAN
2 Algorithms for mobile agents

I consider an agent moves from a node to the consecutive node along the
path:

Xl1-X2— . = X(k-1) — Xk,

where Xi is a node from the wireless network. As an agent may visit the same
node several times Xi and Xj (1 < 4,5 < k) may denote the same or different
nodes. Assume further that an agent is stored in a repository when it is accepted
by the agent system for execution. Each node, except Xk, performs the following
sequence of operations on Transaction Ti:

1. Get(agent) : removes an agent from the node’s repository.

2. Ezecute(agent) : performs the received agent locally.

3. Put(agent) : places it on the repository of the host that will be visited the
right next time.

These three operations are performed within a transaction and hence con-
sisted of the atomic unit of work.
I will present,in this section, the following new algorithm result:

* Migration Algorithm
I will suppose that an agent migrates and executes from node X1 to X2
sequentially, but it is blocked at the client of node X2 until the node X3 is
recovered. If the node X3 was not recovered, the agent may be orphaned or
destroyed by the particular client. To solve this situation has the agent to
skip the faulty node X3 that includes on the migration path, and to move
the address of node X3 back to the last one of the migration path. And
then, the node X2 successfully connects the next other node X4 without
any fault. Node X4 also has a particular fault.
Therefore, node X2 hops the right consecutive next one of node X4. As
the same method is also applied to other nodes, the agent’s migration path
has reordered. That is, despite of any particular faulty nodes, the agent
tries to connect subsequent nodes for the migration touring. This solution
changes the previous arranged migration path by connecting normal nodes
except that some nodes have the particular fault. Afterward, the agent
retries to connect each certain fault node after it waits for the timestamp
assigned by the mobile agent system. If the certain faulty node is recovered
by the timestamp, the agent will succeed in migrating to the destination
node. Otherwise, the address of the faulty node will be discarded. Since
the agent may be able to loophole, we will give a restriction against the
number of reconnection times.
The structure of a migration algorithm is:

Migration algorithm
for (each agent’s routing-table)

Migration Algorithm for Mobile Agents 111

begin
Extract a target address and fail checked information;
if (no more a target address)
Backward multicasts signal to successful target nodes;
if (exist a fail checked address)
begin
times or not
// check whether connect more than two times or not
Wait the agent during some system timestamp;
Try to connect Socket to the address;
if (success)
begin
Call go Agent;
Exit;
end
else
begin
Notify to user the address is unavailable;
Ignore the address;
end
end
else
if (not a fail checked address)
begin
Try to connect Socket to the destination node;
if (success)
begin
Call go Agent;
Exit;
end
else
begin
Notify to user;
Move the current failed address to last in the routing-table;
Set the fail checked information;
end
end
end

Figure 1 shows that a whole rearranged migration path for the mobile
agent be changed by this strategy:

112 C.-1. POPIRLAN

Fig. 1. The reordering before and after meet with faulty nodes.

3 An application which uses the migration algorithm

I implemented the proposed algorithms in TRACY [2], a model of mobile
agent system based on Java language for system independent platform. The
TRACY Toolkit uses the standard Java (Version 1.4) execution environment
without any modifications, neither of the virtual machine nor of any of the
core Java APIs. Large parts of TRACY are free software for non-commercial
purposes distributed by the University of Jena.

The results obtained can improve effectively the problem of performance
and networks overhead due to the imposed characteristics of distributed ar-
chitecture since a mobile agent offers not only the migration reliability and
transparency for mobile agent as autonomously as possible but also computing
environment which is capable of distributed processing with mobile objects.

Mobile agents (in our case, specialised agents) autonomously collect us-
age data from all users and ”"learn” user habits using LRS(Longest Repeating
Subsequence) [8] model. Helper agents then predict the next action to be per-
formed by the user, and display available actions in order of probability in the
specialised toolbar (see Figure 3). Additionally, agents cooperate and adjust
user interface to suite users preference.

The proposed algorithm can be used in wireless network to obtain an effi-
ciency of communications (the nodes reordering.

4 Conclusions and future work

HE following open problems arise from this paper:

— Comparative study concerning these two algorithms and other migration
algorithms [3];

— Study the case when the agent has toured for all nodes having no faults
before that it does re-connect with the faulty nodes.

Migration Algorithm for Mobile Agents 113

antshinkant —f I
ldfile: build-e

ated dip:
piling 9

zeconids

Fig. 2. A screen shot of building the algorithm in TRACY.

T =gl
Fle Edit Farmat View Halp

>» RUnning agent a
-> Toad agent
return in CLASS
RESPONSE: Done!
=» Ifn System, Execution time = 412
»» Successtul send to 172.16.35.100;11011 !
> ROANING A0BNTS .uiivvuuivaasas
—» Succeedly sent the next 172.16.35.100:11010 ——-
-> Succeedly sent the next 172.16,35.100:11010 --—- et |

Fig. 3. A screen shot of executing the algorithm with TRACY.

114 C.-1. POPIRLAN

In this paper we introduce the Migration Algorithm to ensure the migra-
tion of mobile agents in networks. The proposed scheme not only affords to
avoid any faults of nodes or clients of mobile agents on network but also af-
fects to agents’ life span. All presented techniques have been implemented in
TRACY. Therefore, TRACY can improve effectively the problem of perfor-
mance and networks overhead due to the imposed characteristics of distributed
architecture since a mobile agent offers not only the migration reliability and
transparency for mobile agent as autonomously as possible but also computing
environment which is capable of distributed processing with mobile objects.

References

[1] P. Braun , W. Rossak:- Mobile Agents: Concepts, Mobility Models, & the
Tracy Toolkit, Elsevier Inc. (USA) and dpunkt.verlag (Germany), 2005

[2] ***.- The Tracy web page http://wiki.tracy.informatik.uni-
jena.de/mobileagents/tiki-index.php

[3] J. Baumann:- Mobile Agents: Control Algorithms, Lecture Notes in Computer
Science, Springer

[4] Cl Popirlan, Cr. Popirlan:- Mobile Agents communication for knowledge rep-
resentation, The 11th World Multi-Conference on Systemics, Cybernetics and In-
formatics: WMSCI 2007, July 8-11, 2007 Orlando, Florida, USA, 231-238

[5] Cl Popirlan, Cr. Popirlan:- Using Mobile Agents in User Interfaces Function-
ality, Research Notes in Artificial Intelligence and Digital Communications, 6-nd
Romanian Conference on Artificial Intelligence and Digital Communications, Thes-
saloniki, Greece, August 2006, Vol.106, 62-68

[6] M. Ghindeanu, Cr. Popirlan:- A Natural Language Processing System using
Java-Prolog Technology, Vol.105, 5-nd Romanian Conference on Artificial Intelli-
gence and Digital Communications, Craiova, June 2005

[7] Cl Popirlan:- A Java Implementation of Modeling Results About Stratified
Graphs, Research Notes in Artificial Intelligence and Digital Communications,
Vol.104, 4-nd Romanian Conference on Artificial Intelligence and Digital Commu-
nications, Craiova, June 2004, 31-38

[8] ***:- Java Remote Method Invocation, http://java.sun.com/products/jdk/rmi/

[9] ***.- XIML (eXtensible Interface Markup Language), http://www.ximl.org/

[10] ***.- Distributed Objects & Components: Mobile Agents,
http://www.cetuslinks. org/oo_mobile_agents.html

[11] ***:- Foundation for Intelligent Physical Agents, http://www fipa.org

