Projection Algorithm for Solving the Convex Feasibility Problem

Cristina POPÎRLAN

Computer Science Department, University of Craiova A.I. Cuza Street, No. 13, 200585 Craiova, Romania cristina_popirlan@yahoo.com

Abstract. It is a well know problem to find an element in the intersection of a family of closed convex sets with nonempty intersection. This article presents an application for this problem. **Keywords**: convex feasibility problem, projection algorithm. Math.Subject Classification 2000: G.1.5

Introduction 1

Let E be a Banach space. I suppose that in this space I have a family of closed convex sets with nonempty intersection,

$$M_i \in E, i = \overline{1, m}, M = \bigcap_{i=1}^m M_i \neq \emptyset.$$

The convex feasibility problem is to find a point in $\bigcap_{i=1}^{m} M_i \neq \emptyset$.

There are two cases:

- 1. on sets M_i we can make projections that can be explicitly calculated;
- 2. on sets M_i we can not make projections, but we can make projection on an approximation of those sets M_i .

Projection algorithm

Let E be a Banach space with the convex closed subsets $M_i \in E$, $i = \overline{1, m}$ with nonempty intersection $M = \bigcap_{i=1}^m M_i \neq \emptyset$.

For every $i = \overline{1,m}$ I define the nonexpansive function $T_i^{(n)}: E \to E$ with the property $M_i \subseteq Fix(T_i^{(n)})$. Suppose $\alpha_i^{(n)} \in [0, 2]$ and the application:

$$R_i^{(n)} = (1 - \alpha_i^{(n)})I + \alpha_i^{(n)}T_i^{(n)}$$

I have the following notation:

$$A^{(n)} = \sum_{i=1}^{m} \alpha_i^{(n)} R_i^{(n)}.$$

I define an algorithm base on the construction of the following sequence:

$$x_0 \in E$$

$$x_{n+1} = A^{(n)}x_n$$
, for $n \ge 0$.

Definition 1. An algorithm has focus if for every i and for every subsequence $\{x_{n_k}\}_{k\to\infty}$ we have:

$$\{x_{n_k}\}_{k\to\infty}$$
 converges weakly to x

$$\{x_{n_k} - T_i^{(n_k)}\}_{k \to \infty}$$
 converges strongly to 0

goes to $x \in M_i$

Theorem 1. Let $T_i: E \to E$, $i = \overline{1,m}$ be nonexpansive functions and $M_i = Fix(T_i)$. If the sequence $\{T_i^{(n)}\}_{n\to\infty}$ converge then the algorithm has focus.

Theorem 2. The algorithm has the following proprieties:

 $-if x \in E \text{ and } n \geq 0, \text{ then }$

$$||x_n - x||^2 - ||x_{n+1} - x||^2 = \sum_{i < j} \lambda_i^{(n)} \lambda_j^{(n)} \alpha_i^{(n)} \alpha_j^{(n)} ||T_i^{(n)} x_n - T_j^{(n)} x_n||^2 +$$

$$+ 2 \sum_i \lambda_i^{(n)} \alpha_i^{(n)} \langle x_n - T_i^{(n)} x_n, T_i^{(n)} x_n - v \rangle +$$

$$+ \sum_i \lambda_i^{(n)} \alpha_i^{(n)} [2 - \sum_j \lambda_j^{(n)} \alpha_j^{(n)}] ||x_n - T_i^{(n)} x_n||^2$$

 $-if x \in M \text{ and } n \geq 0, \text{ then }$

$$||x_n - x||^2 - ||x_{n+1} - x||^2 \ge \sum_i \mu_i^{(n)} ||x_n - T_i^{(n)} x_n||^2$$

- the sequence $\{x_n\}_{n\to\infty}$ is monotone and bounded
- $-if n \ge 0, then$

$$||x_{n+1} - x_n|| \le \sum_{i} \lambda_i^{(n)} \alpha_i^{(n)} ||x_n - T_i^{(n)} x_n||$$

- the algorithm has focus
- if $IntM \neq \emptyset$ then the sequence $\{x_n\}_{n\to\infty}$ converges to a point in E
- if the sequence $\{x_n\}_{n\to\infty}$ has a subsequence $\{x_{n_i}\}_{n_i\to\infty}$, $\lim_{n_i\to\infty} d(x_{n_i},M) = 0$ then the sequence $\{x_n\}_{n\to\infty}$ converges to a point in M.

The convex feasibility problem

Let x be in E. I note the projection of x on M_i with P(x,i). If $x \in M_i$ then P(x,i) = x. Suppose I have i_x so that

$$||x - P(x, i_x)|| = \max_{i} ||x - P(x, i)||.$$

Let $T: E \to E$ be a function with $Tx = P(x, i_x)$.

To find an element in $\bigcap_{i=1}^{m} M_i$ I must find a fix point of the function T, so $\bigcap_{i=1}^{m} M_i = F(T).$

Lemma 1. Let $M_i \in E$, $i = \overline{1,m}$, be a family of closed convex sets with nonempty intersection Int $\bigcap_{i=1}^{m} M_i \neq \emptyset$ and Int $\bigcap_{i=1}^{m} M_i$ is bounded. Suppose that there exists the sequence $\{x_k\}_{k\to\infty}\in E$ with $\lim_{k\to\infty} d(x_k,M_i)=0$ for every $i = \overline{1, m}$.

Then
$$\lim_{k\to\infty} d(x_k, \bigcap_{i=1}^m M_i) = 0.$$

Demonstration

Suppose it exists $o \in Int \bigcap_{i=1}^{m} M_i$. Then exists a closed ball $D(o,r) = \{x \in Int \cap A_i\}$

$$E, ||x|| \le r\} \subset Int \bigcap_{i=1}^m M_i$$
. Fie $\epsilon \in (0,1)$ and $C \in R$ with $||x|| \le C - \epsilon$.

Because $\lim_{k\to\infty} d(x_k, M_i) = 0$, then exists a sequence $\{y_k^{(i)}\}_{k\to\infty} \in M_i$ with the property

$$\lim_{k \to \infty} ||y_k^{(i)} - x_k|| = 0.$$
I have the following notation:

$$z_k = (1 - \frac{C}{\epsilon})(y_k^{(i)} - x_k), \ k \ge 0.$$

Then exists the number $k_i(\epsilon)$ with the property

$$||y_k^{(i)} - x_k|| \le \frac{r}{|1 - \frac{C}{\epsilon}|}$$
 for every $k \ge k_i(\epsilon)$.

So $||z_k|| \le r$, so $z_k \in M_i$.

It follows the next relation:

$$(1 - \frac{\epsilon}{C})x_k = \frac{\epsilon}{C}z_k + (1 - \frac{\epsilon}{C})y_k^{(i)}$$
 for every $k \ge k_i(\epsilon)$.

So
$$(1 - \frac{\epsilon}{C})x_k \in M_i$$
 for every $k \ge k_i(\epsilon)$.
Let $k_0(\epsilon) = \max_i k_i(\epsilon)$. So $(1 - \frac{\epsilon}{C})x_k \in M_i$.

For every $k \geq k_0(\epsilon)$ the next relations are true

$$(1 - \frac{\epsilon}{C})x_k \in \bigcap_{i=1}^m M_i$$

$$d(x_k, \bigcap_{i=1}^m M_i) \le ||x_k - (1 - \frac{\epsilon}{C})x_k|| = \frac{\epsilon}{C - \epsilon} ||(1 - \frac{\epsilon}{C})x_k|| < \epsilon.$$

For the next theorem I have the sequence $\{x_k\}_{k\to\infty}\in E$ obtained with the Mann iteration:

$$x_{k+1} = T_t(x_k), T_t = (1-t)I + tT, T(x) = P(x, i_x).$$

Theorem 3. Let $M_i \in E$, $i = \overline{1,m}$, be a family of closed convex sets with nonempty intersection $Int \bigcap_{i=1}^{m} M_i \neq \emptyset$ and $Int \bigcap_{i=1}^{m} M_i$ is bounded. Suppose there exists the sequence $\{x_k\}_{k\to\infty} \in E$.

Then the sequence $\{x_k\}_{k\to\infty}$ converges strongly to a fix point from $\bigcap_{i=1}^m M_i$ for $x_0 \in E$.

Demonstration

Because $F(T_t) = \bigcap_{i=1}^m M_i$ is a closed set, T_t is a quasinonexpansive function and $\lim_{k \to \infty} d(x_k, \bigcap_{i=1}^m M_i) = 0$, and using the lemma I obtain that the sequence $\{x_k\}_{k \to \infty}$ converges stongly to a fix point from $\bigcap_{i=1}^m M_i$.

4 Application

This application solves a linear system with 4 inequations and 2 unknowns. I consider the following linear system of inequations:

$$a_{11}x + a_{12}y + b_1 > 0$$

$$a_{21}x + a_{22}y + b_2 > 0$$

$$a_{31}x + a_{32}y + b_3 > 0$$

$$a_{41}x + a_{42}y + b_4 > 0$$

Every inequation is represented in the application as a line.

- 1. first all the four lines must be drowned and saved:
- related to a point on the screen, the surface that interesse us must be selected, this must be done because the application solves a linear system on inequations;
- 3. then the application determine all the intersections between this lines and then it presents the solution of the system;
- 4. the user can draw a point on the screen and the application presents the sequence as in the algorithm and the limit of the sequence.

Here I present some examples of this application:

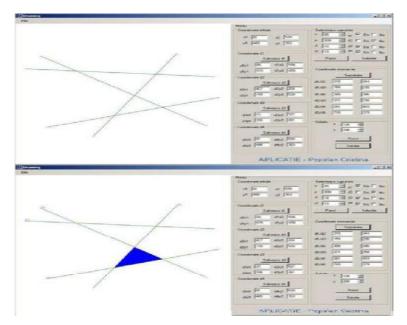


Figure 1. Example 1

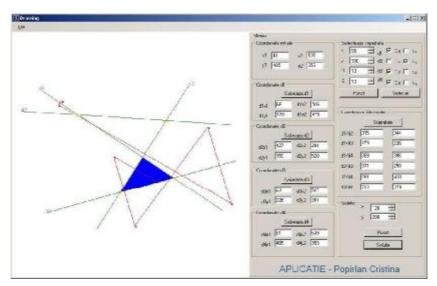


Figure 2. Example 1

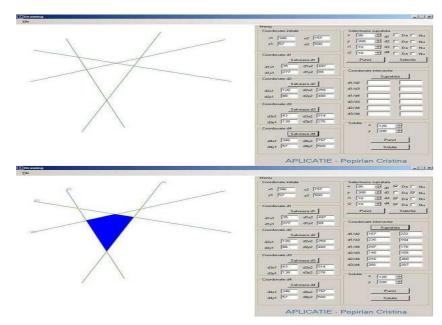


Figure 3. Example 2

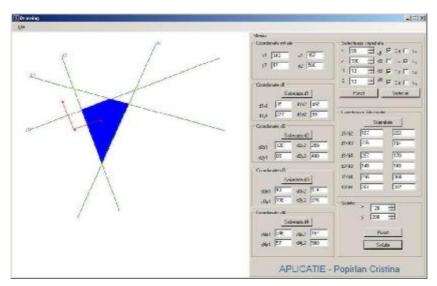


Figure 4. Example 2

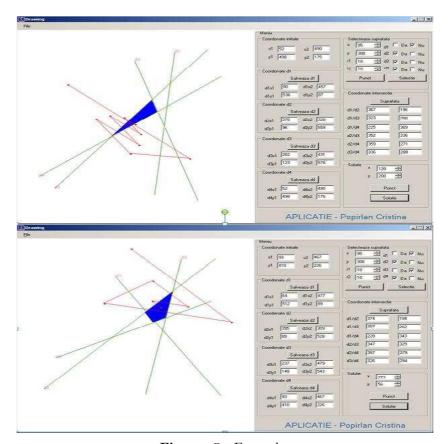


Figure 5. Examples

References

- [1] S. Măruşter:- The solution by iteration of nonlinear equations, Proc. Amer. Math. Soc. 63, 1977, 69-73
- [2] **C.E. Chidume, B.V. Nnoli**:- A necessary and sufficient condition for the convergence of the Mann sequence for a class of nonlinear operators, Bull. Korean Math. Soc. 39, nr. 2, 2002, 269-276
- [3] C.E. Chidume:- An iterative method for nonlinear demiclosed monotone-type operators, Dynam. Systems Appl. 3, nr. 3, 1994, 349-355
- [4] **C.E. Chidume**:- The solution by iteration of nonlinear equations in certain Banach spaces, J. Nigerian Math. soc. Vol. 3, 1984, 57-72
- [5] K.K. Tan, H.K. Xu:- Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178, 1993, 301-308
- [6] M.O. Osilike, A. Udomene:- Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of the Browder-Petryshyn type, J. Math. Anal. Appl., 256,No. 2, 2001, 431-445