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Abstract. In this paper is simulated the stable pattern generation and
the evolution of the zebra skin models, composed of pigmented and non-
pigmented cells The simulation experiments were carried out applying
a genetic algorithm to the Young cellular automaton: a discrete version
of the reaction-diffusion equations proposed by Turing in 1952.
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1 Introduction

One of the classical problems of morphogenesis, or the development of com-
plex forms and patterns found in living organisms (Prusinkiewicz, [5]), is to ex-
plain how patterns of different animals (i.e., mammals, seashells, marine fishes)
evolved resulting in a consolidated and stable pattern generation after genera-
tion. In 1952 Turing published a paper showing how patterns might grow from
an initially nearly homogeneous state and how diffusion could drive to instabil-
ity. A result of such instability is the emergence of patterns as a consequence of
the breakdown of symmetry and homogeneity. Turing proposed that the tempo-
ral variation of the concentrations of two different chemicals, named by Turing
as morphogens (the activator morphogen m, and the inhibitor morphogen m; ),
both diffusible but at different rates (d, and d;), can create patterns (D4 and
Dy nonzero) on an initially homogeneous tissue by reacting in accordance with
the nonlinear functions f and g:

e — f(mg,m;) + daA%m,

(1)

%—rf = g(ma,m;) + d; A*m;

In Turing’s model, the activator morphogen m, activates the production of it-
self and the production of the inhibitor m; , whereas m; inhibits the production
of itself and decreases the activator m, production.

Twenty years after Turing’s contribution, Gierer and Meinhardt ([2]) de-
veloped a model of pattern formation based on a short-range activator and
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a long-range inhibitor which would promote the future development of simu-
lation models by means of cellular automata. Cellular automata are discrete
space and time models that have been used to model biological systems as a
counterpart method to differential equations. A cellular automaton in two di-
mensions consists of a regular grid of cells, and each of them can be in one of a
finite number of possible states, being updated synchronously in discrete time
steps according to a local, identical interaction rule (Wolfram [6]). The state
of each cell at the next time step t 4+ 1 is determined by its present state at
time t and the states of its surrounding neighbors. Depending on the pattern of
initial cell states and transition rules, thus on how neighboring states influence
the state of a particular cell, patterns of cell states in the checkerboard evolve
over time and can propagate, interact, store and compute information ([6]).

Based on such an approach, Young ([7]) simulated Turing’s reaction-diffusion
model considering that cells lay out on a grid with two states, pigmented or
nonpigmented, assuming that the pigmented cells produce activator m, and in-
hibitor MI morphogens diffusing at different rates across the grid. The results
obtained by Young were similar to those obtained with continuous reaction-
diffusion equations.

In this paper, we simulate the evolution of two hypothetical morphogens, or
proteins, that diffuse across a grid, using a modified Young model proposed by
Gravan and Lahoz-Beltra [3]. The grid models an animal skin (as a zebra) in
an embryonic state, composed of pigmented and nonpigmented cells. The sim-
ulation experiments were carried out applying a genetic algorithm to Young
cellular automata searching for proper values of the diffusion distance and the
field value: the two main features that define a morphogen like activator or
inhibitor in Youngs model. In the biological realm, it is generally believed that
zebras are dark animals, the white stripes being the areas where the pigmenta-
tion is inhibited. Such camouflage is an adaptation that prevents zebras from
being seen by predators, confusing the zebras with most natural backgrounds.
Murray ([4]) showed that the chevrons at the base of zebra limbs result from the
overlapping of two reaction-diffusion systems, but in present it is still unknown
how the zebra skin pattern is generated even when Turing’s reaction-diffusion
model could produce their characteristic stripe pattern ([3]).

The result of our simulation show that, under the assumption of the absence
of predators ([4]), recombination is the genetic mechanism that plays the key
role in morphogen evolution.

2 Cellular automata model of Turing’s reaction diffusion
system

The model proposed by Young ([7], [2]) assumes the animal skin is formed
by a uniform distribution of pigmented cells (black, state 1), differentiated by
melanocytes, and undifferentiated cells (white, state 0). Melanocytes produce
the activator morphogen m, which stimulates the transition from state 0 to
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1 of nearby undifferentiated cells, as well as the inhibitor morphogen m; pro-
moting the opposite transition, thus from state 1 to 0, for nearby differentiated
cells. When considered together, both morphogens define a morphogenetic field
which is assumed to be circular and composed of two concentric rings. The mor-
phogenetic field results from a short-range activation and long-range inhibition
areas defined around a melanocyte cell located at the origin or center of the
morphogenetic field. Once the pigmented cells are randomly distributed on a
grid, the transition rules are applied to the pigmented and nonpigmented cells.
The cell automaton model proposed by Young consists of a regular grid of
cells, and each of them can be in one of a two possible states, 0 and 1, when
each cell R on the grid in position (i, j) receives influences of the morphogens
produced by all pigmented cells R, of the neighborhood in positions (o, jo)-
Consider d(R, R,) the Euclidean distance between R and R,:

d(R, Ry) =R~ Ryl = /(i —i0)? + (j — jo)?-

If the Euclidean distance d(R, R),) is less than or equal to radius R1 (d(R, R,) <
r1), then the cell R located in position (i, j) receives the effect of the activator
morphogen m,, which is simulated by a positive field value k;. Otherwise, if
r1 < d(R,R,) < 1y then the cell R in position (i, j) would receive the effect
of the inhibitor morphogen m;, which is given by a negative field value k.
Finally, if for the cell R in position (i, j) we consider the composition of the
effects of the morphogens produced by all nearby pigmented cells R, in the
neighborhood, then the future state of the cell R will be given by the sum of
all the field values.

According to the model, the automaton transition rules for cells are given
by the following rules:

1. If

Z ki — Z ko >0

p:(|[R—Rp|<ry) pir1<|R—Rp|<ro
then the state of cell R at time t + 1 is pigmented (state 1).
2. If
S he Y b
p:(|[R—Rp|<ry) pir1<|R—Rp|<ra

then the state of cell R at time t + 1 does not change and is equal to its
state at time t (state 0 or 1).

3. If
Z ki — Z ko <0

(p:|R—Rp|<ry1) pir1<|R—Rp|<ry

then the state of cell R at time t + 1 is not pigmented (state 0).
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3 Evolving morphogenetic features with a genetic
algorithm

In order to apply a genetic algorithm, we define a population of chromo-
somes simulated as strings of real values

Chromozome := (r1,k1,72,k2) . (2)

where the ”genes” were defined by four real values modelling the diffusion
distance r and the morphogenetic field value k£ of two different morphogen
molecules, the activator m; and the inhibitor ms. (Note that at the beginning of
the simulation the two molecules are not defined as activator or inhibitor, both
being candidates to be one or another type of morphogen during evolution.)

The implemented genetic algorithm uses one-point recombination and a
population size of p = 50, testing recombination probability, as well as mutation
probability values in different simulation experiments. Starting with a random
population of chromosomes, reproduction, recombination and mutation were
simulated, thus obtaining new generations of equal sizes. The initial population
of chromosomes was obtained choosing arbitrary r; and r; in between 1 and
10, as well as k; and ks in between —5 and 5.

3.1 The fitness function

At each generation, the fitness f of each chromosome, thus the degree of the
achievement of the M1 and M2 molecules in the morphogenic field, is defined
as

[ =mazx{fi, fa} (3)

where

fi =C = (lo = Nupw| + 18 = Nun| + |v = Nop|)
fo=C —(Ja = Nyp| + 18 = Nus| + |y = N )-

In the above functions, C' is a constant (thus the total number of contacts
among cells), fixed here at 2500, N, N, and Ny, are the numbers of con-
tacts between white-white, white-black and black-black cells, respectively, and
(o, B,7) are the parameters of the fitness functions whose values were set up as
follows: o = 1500, 3 = 350, v = 750. The parameters « and [ were obtained
after some simulation experiments based on Youngs cellular automata model,
simulations performed considering the values reported by Young: the activator
morphogen m, was a molecule with r; = 2.30, k;= 1, and the inhibitor mor-
phogen m; a molecule with ro=6.01, ko=-1. Based on these values we generated
100 patterns , obtaining the average values of Ny, Nyp and Ny, labelled as
o, B and 7.

In order to obtain the value of f is necessary to perform a simulation of the
cellular automaton model, using the r1, kq, 7o and k5 values coded by each chro-
mosome. The simulation begins assuming an initial random distribution, on a
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rectangular lattice, of 95 percent of white cells (undifferentiated cells) and 5
percent of black cells (melanocytes or differentiated pigmented cells), updating
the state of the cells with transition rules until the resulting pattern no longer
changes. No more that five or six iterations were enough for convergence to a
stable pattern and that the final pattern is not sensitive to the initial distri-
bution of melanocytes or black cells, in the majority cases of our experiments.
(However, in preliminary experiments we found unstable patterns!).

Once the chromosomes are evaluated, we select the mating pool of the
next generation using the roulette wheel algorithm of parents selection (Davis
[1]). This is a method for implementing reproduction simulating the Darwinian
natural selection, by spinning a roulette wheel that assigns to each chromosome
a slot whose arc size is proportional to its fitness value.

3.2 The crossover operator

Once a new generation of offspring chromosomes is obtained, a single point
crossover proceeds with pairs of mates randomly selected. Since the first gene
is linked with the second one and the third gene is linked with the fourth one,
the crossover point is not randomly selected from a uniform distribution as is
usual in a genetic algorithm. The crossover point is equal to 2 in the present
simulations, just in the middle position of the chromosome. Finally, a single
point crossover occurs when the segments of the two parent chromosomes 1i,j:

(ri K r5, k) (] ki, 79, k3)
(11, ko3, ky)  (r] kS rh Kb

(4)

3.3 The mutation operator

Mutation at a gene was simulated changing at random the value gene,
choosing the mutated values of r or k£ from a uniform distribution with a
similar range to those defined to obtain the initial population of chromosomes
(0 <r <10 and =5 < k < 5). Once again whether or not to change a gene
value on a chromosome is decided on the basis of a Bernoulli trial, mutation
being a success with a given probability (mutation probability) pmuz.

4 Simulation results and conclusions

Computer simulation experiments were performed using the population size,
the morphogen diffusion distances and morphogenetic field values as described
in Section 2 and 3: population P = 50, the morphogen diffusion distances r; =
2.30, k1= 0.6, 72=6.00, k2=-0.3 (determined by the Young [7]) coefficients) and
a = 1500, 8 = 350, v = 750. The mutation operator was applied each ¢ = 2..5
generations, with the probability p,,.; = 0.1 and the number of generation was
limited to N = 25.
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Fig. 1. Representative stripe patterns obtained with the activator and inhibitor fea-
tures obtained by decoding two chromosomes with maximum average fitness.

In Fig. 1 we show two representative stable patterns obtained by simulation.

An example of the unstable pattern skin development of a zebra is shown
in Fig. 2.
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Fig. 2. Unstable stripe patterns.

The simulation results are consistent with the general picture of pattern
modelling and simulation based on Turings reaction-diffusion scheme ([4]). Af-
ter a large number of simulations, the results indicate that the evolution of
selected morphogens does not strongly depend on the initial configurations (al-
most all configurations become stable after a small number of cell automata
iterations). The impact of mutation operator significative, similar results are
obtained by varying the probability of mutation P,,: and the factor q. The
result of our simulation show that (under the assumption of the absence of
predators), the recombination operator is the genetic mechanism that plays
the key role in morphogen evolution.
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