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Abstract. Various techniques have been proposed that use patient
length of stay (LOS) data to derive patient flow models, which in turn
help to better understand the temporal characteristics of the patients
cared for by a health care facility. An approach complementary to flow
modelling and developed by the authors is concerned with deriving the
case-mix of patients from LOS observations, and building a LOS patient
classification model. Based on this perspective, the population consist
of various groups, staying in hospital according to the statistical prop-
erties of the fitted GMM. In this paper, based on an average number
of admissions, we illustrate how the grouping can theoretically describe
the patients entering into hospital and how this knowledge can further
be used to determine the bed requirement.

Keywords: length of stay(LOS), surgical patients flow, bed require-
ment, Gaussian mixture model

Math. Subject Classification 2000: 62H30; 65C20

Introduction

Various techniques have been proposed that use patient length of stay (LOS)
data to derive patient flow models, which in turn help clinicians and managers
to better understand the temporal characteristics of the patients cared for by
a health care facility (Millard P.H, 1988, Harrison G.W and Millard P.H, 1991,
Millard P.H, 1992, Harrison G.W, 1994, Faddy M.J and McClean S.I, 1999).
An approach complementary to flow modelling and developed by the authors is
concerned with deriving the case-mix of patients from LOS observations, and
building a LOS patient classification model (Abbi R et al., 2007b, Abbi R et
al., 2008). In summary, the methodology comprises of several processing steps
(Abbi R et al., 2007b, Abbi R et al., 2008), where the optimal Gaussian mixture
model (GMM), based on the minimum description length criterion (Rissanen
J, 1978), represents various groups of patients according to their LOS.

The GMM of a given patient population describes patients as belonging
to one of the m groups defined. Based on the perspective that the population
consist of m groups, we can view the population as staying in hospital according
to the statistical properties of the fitted GMM. In this paper, based on an
average number of admissions, we illustrate how the GMM can theoretically
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describe the groups of patients entering into hospital and how this knowledge
can further be used to determine the bed requirement.

The LOS of a patient population is a very important factor when determin-
ing the bed requirement for a given health care facility because it can often
be diverse depending on the case-mix. Such diversity has direct implications
on bed requirements and can make it difficult to understand the way in which
beds are being used. Knowledge of the case-mix of patients, their LOS, and the
corresponding number of beds used, helps to provide a greater understanding
and insight as to the way in which the various groups of patients treated are
occupying the beds for the given health care facility. This can be used to fully
understand the relationship of the likely bed-usage for each group, as well as
the implications on the number of patients treated.

Methods

The Gaussian Mizture Model
The GMM is a probability density function comprising of m normally dis-
tributed component functions (Titterington D.M et al., 1985, McLachlan G.J
and Peel D, 2000). These normally distributed components are combined to-
gether to form the overall density model, flexible enough (depending on m) to
approximate almost any distribution (Bishop C.M, 2006).

We use the GMM to approximate the LOS distribution, where each nor-
mally distributed component is used to model a LOS group, described using
three parameters: mean, variance (or standard deviation) and mixing coeffi-
cient. The mean pi; for component j expresses the most likely LOS for patients
belonging to LOS group j, whilst the variance 032» (or standard deviation o)
quantifies the variation within the LOS group. The mixing coefficient w; for
component j is used to describe the likely proportion of the overall patient
population belonging to the group j.

The probability p(z) of a patient staying = days, without any knowledge of
the patient and any possible seasonal or weekly fluctuations is defined as the
sum of the probabilities from each component, p(z) = Z;”Zl P(j)p(x|7). In this
case, P(j) is the prior probability of belonging to group j, equivalent to the
mixing coeficient w;, and p(z|j) is the conditional probability of LOS observa-
tion x belonging to a Gaussian function, parameterised according to component

7, plz|f) = 2;(72 exp( <x;(f§>2 ). The probability of a LOS observation belong-
ing to a LOS group j is derived using the Bayes rule, p(j|z) = %.

Fitting the Gaussian Mizture model to LOS data
The expectation maximisation (EM) algorithm (Dempster A.P et al., 1977) is
used to estimate the parameters of the GMM from the LOS data (a process also
known as fitting the model to the data). Instead of randomly initialising the
EM algorithm and to reduce computation, the k-means clustering algorithm
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(MacQueen J. B, 1967) is employed. In this cas , the (% *7)t" percentile value
of the LOS data is used as the initial cluster centre c; as inputs for k-means,
where m is the number of groups.

Finding the number of groups
For human comprehension considerations (Miller G.A, 1956) and from own
experimental analysis we only consider GMMs with between two and six com-
ponents. In order to find the optimum number of components we employ the
Minimum Description Length (MDL) criterion (Rissanen J, 1978).

Although MDL has shown to be effective for model selection (Walter M
et al., 2001), it is also known for over-estimating the number of components
(Walter M, 2002). As such, we assess the contribution of additional components
based on the percentage decrease of the MDL value. The MDL criterion has
also been validated against other commonly used criteria (Abbi R et al., 2007a),
such as the Akaike information criterion (Akaike H, 1973) and the Bayesian
information criterion (Schwarz G, 1978), and was found to suggest the same
number of components.

To further aid the selection of an appropriate GMM, ten random samples of
synthetic data are generated based on the parameters of each GMM. The 10",
2510 50th, 75th 95t 99th 99 5t and 100" percentile values for all samples
are averaged, and used to make comparisons, measuring how well each GMM
fits the LOS data.

Patient flow
Based on a derived GMM for a given patient population, we interpret patients
entering a hospital as belonging to one of m groups, Figure 1. The probability
of a patient admitted into hospital to belong to group j is determined by p(j)
i.e. the prior probability equivalent to the mixing coefficient w;.
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Fig. 1. Flow of m groups of patients, where group j stays in hospital for p; days
depending on the variation O'JZ, where the probability of a patient staying x days is
given by p(z|j).
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As depicted within Figure 1, a patient belonging to group j is likely to stay
1 days depending on the variation 032» of group j. However, as an alternative
to using (the average LOS for a patient belonging to group j), a more accurate
estimate of the likely LOS of a patient is to use p(z|j) i.e. the probability of a
patient belonging to group j being discharged in = days.

Bed requirement
To estimate the average bed requirement we take into account the average num-
ber of patients entering the hospital, the groups of patients within the popu-
lation and their corresponding LOS in hospital. Amongst the average number
of patients admitted each day, the calculation involves (1) the probability of a
patient admitted into hospital to belong to group j, and (2) the probability of
a patient belonging to group j being discharged in x days.

Based on probability theory, we calculate the likely bed requirement ac-
cording to four core components of the bed requirement model. These are as
follows:

1. Patients entering hospital: This is defined as an average number of daily
admissions, denoted as a, where a; of these patients, defined as a; = a- wy,
belong to group j.

2. Likely discharge of patients: The probability of a patient, belonging to
group j, being discharged d days after admission, Equation 1.

a. Using the cumulative Gaussian function F;(d) = P(z < d), defining the
probability of being discharged in d days, and the average number of
patients being admitted per day a; ,we can calculate the likely number
of patients to be discharged within d days, calculated as [F};(d) - a;].

b. We can also derive the likely percentage of patients from a; that are
discharged within d days after admission, defined as [F;(d) - 100].

c. Note that the probabilities associated with negative LOS values refer
to patients who stay zero days, discharged on the same day of being
admitted.

3. Likely number of patients still in hospital: By defining patient admission
and discharge percentage rates, we can derive, for each group, the likely
number of patients in hospital.

a. To calculate the likely occupancy levels for group j, we denote, n;l as
the likely number of patients, from the admitted a;, still in hospital d
days after being admitted, Equation 2.

b. In addition, we can also derive the percentage of those who are still in
hospital d days after admission [1 — F;(d)] - 100.

4. Accumulation of patients still in hospital and bed requirement: Based on
the above, we can derive the likely accumulation of patients and the bed
requirement.

a. We drive the number of days d’ where it becomes most likely for all
patients belonging to group j, to be discharged, i.e. Fj(d') > 99.5.
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b. We then to calculate the bed requirement for group j by taking into
account the accumulation of patients within hospital from d = 1 until

day &', i.e. Zg;l nf, see Table 1.
c. The bed requirement for the overall population takes the sum for all m

. m d’ q
groups, i.e. ijl Z(FO nj.

Fj(d) = Pj(z <d) = [*_ f(x)dz (1)
nd =11 F;(d)] - a5 (2)

Table 1. The accumulation of patients belonging to group j

Day| # of |# of patients # of patients
(d) | patients |in hospital discharged
admitted

1 a; ni i (aj — n%) .

a; nj—l—n% i (aj—n{)—l—(aj—n%)
3 aj |[ni+ni+n; (a; —nj) + (a; —n3) + (a; —n))
. a;
d’ a;  [n?+n + . +nllla;—nD)+ ..+ (g, —nT) + (g, — nd)

The table above mathematically depicts the accumulation of patients as
time passes from day 1 to day d’. For instance, on day d = 1, a; patients
belonging to group j are admitted into hospital. Amongst the a; of patients
admitted, njl» stay in hospital, are discharged on the same day of being admitted,
and n? stay in hospital overnight and are still in hospital on day d = 2. Thus
the next day (d = 2), a further a; are admitted, where njl» stay in hospital, n?
are still in hospital from day d = 1. Moreover, a; — njl» are discharged on the
same day of being admitted and a; — n? are discharged after being in hospital
for two days.

This cycle of patients entering into the hospital system and leaving con-
tinues and the number of patients in hospital accumulates until day d’ where
the system reaches a stable state. In other words the time required to obtain a
consistent bed occupancy level, whereby the build up of patients is taken into

account according to the admission rate and LOS of patients.

Dataset
The data used is a surgical administrative discharge dataset. It consists of 7,723
records detailing the spells of patients undergoing some form of surgery in a
tertiary hospital in Adelaide, Australia, discharged between 1% July 1997 and
30" June 1998. The variables describing each patient spell include the dates of
hospital admission and discharge, the LOS in days, the gender of the patient,
whether the patient was treated in a public or private hospital, whether the pa-
tient was admitted as an emergency case, and finally the diagnosis information
- coded using major diagnostic categories (MDC). The MDC coding system
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consists of 25 categories, each of which corresponds to a single organ system.
Each MDC for a patient is determined by the primary disease or condition for
which a patient is hospitalised or treated.

Results

The Surgical data was split into two subsets and various GMMs were fit-
ted to the LOS data using the EM algorithm. Based on the MDL criterion,
percentile analysis and the statistical criteria the four component model was
selected. The parameters of the four component model indicate that patients
stay in hospital according to one of the four patterns of stay, Table 2. Most of
the patients belonging to group one will all be discharged within four days of
being admitted, Table 3. In addition, patients belonging to group two will be
discharged within 12 days for group two, 29 days for group three, and 125 days
for group four, Table 4.

Table 2: Mean, variation, and proportion for each of the four groups of
surgical patients

Patient group
f=1 f=2 f=3 f=4 Total
Mean LOS (days) 22 54 134 392 -
Standard Deviation 0.5 2.2 6.0 26.0 -
Proportion of patients 38.3% 39.4% 18.8% 3.5% -

Table 3: Percentage of patients belonging to group 1 being discharged in d
days

Days (d) % of patients discharged

0 0

1 0.8
2 34.5
3 94.5
4 99.9

Table 4: Number of days when it becomes most likely for patients to be
discharged

Group d’

1 4 days

2 12 days
3 29 days
4 125 days
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To determine the likely bed occupancy we derived the average daily number
of surgical patient admissions, which was 21 admissions per day. In this case,
from the 21 admissions, we estimated that eight patient admissions would ex-
hibit the LOS properties of group one, eight patient admissions of group two,
four patient admissions of group three, and 1 patient admission per day to
group four.

According to the average admissions for group one, on day d’, 21.5 patients
are in hospital, thus we define the bed requirement for group one as 22, Table 5,
and we derived the average number of beds that were most likely to be required
for treating the surgical patient population, Table 6.

Table 5. The accumulation of patients belonging to group j

Day (d)| # of patients admitted| Accumulation of patients in hospital
0 8 8

1 8 7.9+ 8.0

2 8 524794+ 8.0

3 8 04+52+79+8.0
d=4 1|8 00404452479+ 8.0

Table 6: Average number of surgical patient admissions and occupied beds
for each group

patient  Average admissions Average % of beds
group (j) per day (21) number of beds used

1 8 22 14.1

2 8 49 31.4

3 4 55 35.3

4 1 30 19.2
Total 21 156 100

According to the model, the first group, representing 38.3% of the popu-
lation, who stay on average 2.2 days, occupy 14.1% of the beds. The second
group, representing 39.4% of the population who stay on average 5.4 days oc-
cupy 31.4% of the beds. The third group, representing 18.8% of the population
staying on average 13.4 days occupy 35.3% of the beds. Lastly, the fourth group
representing 3.5% of the population staying on average 39.2 days occupy 19.2%
of the beds.

Discussion

In this paper, we described how the GMM can be seen as representative of
the way in which patients flow through a given hospital or health care facility.
In addition, based on this concept of patient flow, we described how we can
estimate the average occupancy to determine the bed requirement for a given
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population. The calculations involved in determining the bed requirement were
obtained using an Excel spreadsheet package.

Such a model can also be used to perform a what-if type of analysis to assess
the impact of different strategies on the bed requirement and answer questions
related to improving bed use. For instance, what would be the impact on the
bed requirement if we reduced the mean LOS of the longer stay surgical patients
by ten days?

Interestingly, we found that the third group use the largest proportion of
beds, which was surprising since they represent only 18.8% of the population.
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