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Abstract. The aim of this study is to compare the classification per-
formances of two well-known algorithms: naive Bayesian and k-nearest
neighbor, using a real medical dataset concerning the hepatic cancer.
Three main performance measures have been used: the classification
accuracy, sensitivity and specificity. This approach can help physicians
to make fast and accurate decisions in the non-invasive hepatic cancer
detection.
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1 Introduction

Bayesian classifiers are a class of simple probabilistic algorithms which apply
the Bayes’ theorem in order to learn the underlying probability distribution
of the data. A difficulty arises when we have more than a few variables and
classes. In this case, we have to require an enormous number of observations to
estimate these probabilities. Naive Bayesian classification solves this problem
by not requiring that we have a lot of observations for each possible combination
of the variables. Rather, the variables are assumed to be independent one each
other and, thus, we assume that the effect of a variable value on a given class
is independent of the values of the other variables. This assumption is called
class conditional independence and is made to simplify the computation (in
this sense it is considered to be "naive”).

Recall that studies comparing classification algorithms have found that the
naive Bayesian classifier is comparable in performance with decision trees and
neural network classifiers.

The k-nearest neighbors (K-NN) classification rule is a technique for non-
parametric supervised pattern classification, representing a type of instance-
based learning. Basically, for the K-NN algorithm, a new instance is classified
based on the majority of the K-nearest neighbor categories. The purpose of this
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algorithm is to classify a new object based on attributes and training samples.
Given a new instance, we find K objects (or training points) closest to this
instance. The classification is using majority vote among the classification of
the K objects.

The K-NN algorithm has some strong consistency results. Thus, it is guar-
anteed to approach the Bayes error rate, for some value of K (where K increases
as a function of the number of data points). In this study we try to compare
the above two algorithms, by using a concrete medical database, concerning
patients with and without hepatic cancer (HCC).

2 Bayesian classifier

Let X be a data sample whose class label is unknown. Let A be some hypoth-
esis such as that the sample X belongs to a specified class (2. For classification
problems we want to determine P(A/X) -the probability that the hypothesis
A holds, given the observed data sample X. P(A/X) is the posterior probability
of A conditioned on X, and P(A) is the prior probability of A.

The Bayes’ theorem is useful in that it provides a way of calculating the
posterior probability P(A/X) from P(A), P(X) and P(X/A), which may be
estimated from given data. Technically, the Bayes’ theorem says that:

P(A/X) = PR

Naive Bayesian classifier assumes that the effect of an attribute value of a
given class is independent of the values of the other attributes. This assumption,
known as ’class conditional independence’, is made to simplify the computation
involved. It works as follows:

1. Each sample is represented by an m-dimensional feature vector
X = (z1,22, ..., Tm), depicting a measurement made on the sample from n
attributes, respectively Aj, As, ..., Ap,.

2. Suppose that there are p classes §21,(2,...,{2,. Given a data sample X
which has no class label, the classifier will predict that X belongs to the
class having the highest posterior probability, conditioned on X. Thus, it
assigns the unknown sample X to the class {2; if and only if: P(£2;/X) >

P(2i/X),1<i<pi#]j
By Bayes formula, we have:

P(02/X) = PEZILER)

3. Only P(X/$2;)P(£2;) needs to be maximized because P(X) is constant.
The class prior probabilities may be estimated by P(f%;) = %, where n;
is the number of training samples of class {2; and n is the total number of

training samples.
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4. In order to reduce the computation effort in evaluating P(X/2;), the naive
assumption of class conditional independence is made. This presumes that
there are no dependence relationships among the attributes. Thus:

P(x/2) = [ PGx/)

The probabilities P(xy/{2;) can be estimated from the training sample.
Thus:

— If Ay is a categorical variable, then:

Pz /) = %7 where n;j, is the number of training samples of class {2;

having the value zj (n; is the number of training samples of class §2;).
— If Ag is a continuous variable, then the attribute is assumed to have a
Gaussian distribution:
(zr—mg,)?
P(a1/$%;) = 5o oxp — (7k20?f )

27To'ygi

where mp, and oq, are the mean and standard deviation, given the values
of attribute Ay for training samples of class (2;.

Theoretically, the Bayesian classifiers have the minimum error rate in com-
parison to all other classifiers, but in practice this is not always the case, owing
to inaccuracies in the assumption of class conditional independence.

3 K-nearest neighbor classification

K-NN classification is one of the most fundamental and simple classification
methods and should be one of the first choices for a classification study when
there is little or no prior knowledge about the distribution of the data. The
goal of this method is to separate the data, based on the assumed similarities
between various classes. Thus, the classes can be differentiated from one another
by searching for similarities between the data provided.

The K-NN classifier requires three things:

— The set of stored records (training data);
— A distance metric to compute distance between records;
— The value of £, the number of nearest neighbors to retrieve.

To classify an unknown record we need to:

— Compute the distance to other training records;

— Identify k nearest neighbors;

— Use class labels of nearest neighbors to determine the class label of unknown
record (e.g. by taking majority vote).
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The K-NN classifier is commonly based on the Euclidean distance:
d(X,Y) = Z:L(% - yi)?

where X = (21,22, ..., %y) and Y = (y1,¥2, ..., Ym), between a test sample
and the specified training data. The K-NN classification rule is to assign to
a new, unknown, object the majority category label of its k nearest training
data. Technically, we take the majority vote of class labels among the k-nearest
neighbors and we weigh the vote according to distance by using a weight factor.
The only major problem is the choice of the value of k (if & is too small, the
method is sensitive to noise points, and if k£ is too large, neighborhood may
include points from other classes).

4 Comparison methodology

In order to assess which methodology performs better, we have used both
the confusion matriz, given by:

Count Predicted class
+ -
Actual class|+|a = true positive (TP)|b = false negative (FN)
¢ = false positive (FP)|d = true negative (TN)

and the cost matriz, given by:

Cost Predicted class
+ -
Actual class|+|p = cost (TP)|p = cost (FN)
- |r = cost (FP)|s = cost (TN)

Thus, we have:

Accuracy = (a+d)/(a+b+c+d)

Cost = p*a + q*b + r*c + s*d

Moreover, we consider the following two classification parameters:

Sensitivity = %7

Specificity = % .

5 The dataset

We have applied the two classifiers to a concrete dataset consisting of 299 pa-
tients from the Department of Gastroenterology, University Hospital of Craiova,
with or without hepatic cancer (classes 21 = HCC and {22 = non-HCC pa-
tients).
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The final diagnosis has been established by using the classical biopsy proce-
dure. In the classification process we have used as attributes the most important
serum enzymes: total bilirubin (TB), direct bilirubin (DB), indirect biliru-
bin (IB), alkaline phosfatase (AP), gamma glutamyl transpeptidase (GGT),
leucine amino-peptidase (LAP), aspartate amino transferase (AST), alanine
amino transferase (ALT), lactic dehydrogenase (LDH), prothrombin index (PI),
Gamma, Albumin, Glycemia, Cholesterol and age.

6 Results

We applied the two classification algorithms, by using the Java program-
ming language. The results of this approach are displayed in Table 1 below.
Table 1. The comparison results between the two classifiers

Classifier Accuracy|Sensitivity|Specificity | Costs
Bayesian classifier|93% 33% 100% 603
K-NN classifier [90% 0% 100% 900

Remark 1. The two classifiers provide near similar results on this particular
database.

2. The specificity value is the same for the two classifier (100%). The higher
the specificity, the fewer healthy people are labelled as sick.

3. The sensitivity differs from a classifier to another one. The higher the
sensitivity, the fewer real cases of diseases go undetected.

7 Conclusions

In this study we have compared two well-known classifiers by using a real
medical dataset concerning the hepatic cancer, They have been used to de-
tect the hepatic cancer (HCC) in 299 patients depending on several important
serum enzymes. The classifiers worked well on this database, with comparable
accuracies. This computer-aided medical diagnosis will provide physicians with
a powerful tool to support them in a fast and accurate medical decision.
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1 Introduction

The Reaction-Diffusion modeling and simulations, particularly in a sense of
chemical computation or in the domain of biophysics, becomes a hot topic of
computer science, physics and chemistry.

The Reaction Diffusion process is one in which a number of substances or
morphogens can diffuse over a surface and react with each other to produce
stable patterns on the surface. This mechanism has been studied by biologists
as well as mathematicians as the system, which consists of a series of non-
linear coupled partial differential equations, is thought to be responsible for
pattern formation in nature, such as the patterns on an animal’s coat. Work
on reaction diffusion began when Alan Turing proposed a mechanism which
could explain the development of animal embryos and the fact that they can
be self-organizing.

The pattern generating reaction-diffusion systems are governed by a set of
coupled partial differential equations as seen above. The problem with simulat-
ing a system such as this is that the equations are continuous. This means that
the equation represents the entire solution space of the system which has an
infinite number of values for time and space. The continuous nature of the sys-
tem makes it very difficult to simulate on a computer which by nature cannot
handle continuous systems.

We must therefore discretize these equations so that we can simulate the
system on a grid or lattice which can be used in a computer. This discretization
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is done on a lattice where the simulation takes place. The simulation method
used is that of cellular automata.

In 2007 I proposed a very simple CA model that can simulate the zebra
skin patterns formation (see [1]). This model was constructed beginning from
the Yang discretization of Turing’s system, following the approach of Gra-
van C. and Lahoz-Beltra R.([2]). The purpose of the present paper approach
is to propose an alternative approach to construct a pattern generator sim-
ulation for mammals skin models (leopard, tiger or giraffe), obtained by a
direct ultra-discretization procedure applied to the Thomas-Murray Reaction-
Diffusion System, and to verify if the ultra-discretization method preserves the
reaction-diffusion phenomena in this particular case.

2 The Thomas-Murray system (TMS)

In 1952 Turing ([8]) published a paper suggesting that, under certain con-
ditions, some chemicals can react and diffuse from an initially nearly homoge-
neous state to create spatial stable patterns as a consequence of the breakdown
of symmetry and homogeneity. Turing proposed that the temporal variation of
the concentrations of two different chemicals, named by Turing as morphogens
(the activator morphogen u and the inhibitor morphogen uv), both diffusible but
at different rates (d, and d;), can create patterns on an initially homogeneous
tissue by reacting in accordance with some nonlinear functions f and g:

The general form of Turing’s Reaction-Diffusion systems is

%

{ u — 4, Vu+ f(u,v) (1)
S = diVv + g(u,v)

where dg, d; are diffusion constants, x, y are the spatial coordinates and
u, v are functions of x, y and t.

In Turing’s model, the activator morphogen u activates the production of
itself and the production of the inhibitor v , whereas v inhibits the production
of itself and decreases the activator « production.

More that twenty years later, Thomas ([6]) proposed a model of enzyme
reaction, based on the Turing’s Reaction Diffusion system. This particular sys-
tem was largely studied by Murray ([4], [5] Chap.15) as the possible mechanism
responsible for laying down most of the mammals coat spacing patterns. The
model assumes the animal skin is formed by a uniform distribution of pigmented
cells (black, state 1), differentiated by melanocytes, and undifferentiated cells
(white, state 0). Melanocytes produce the activator morphogen u which stimu-
lates the transition from state 0 to 1 of nearby undifferentiated cells, as well as
the inhibitor morphogen v promoting the opposite transition, thus from state 1
to 0, for nearby differentiated cells. The time evolution of the concentrations of
activator/inhibitor morphogenes is determined by the Thomas-Murray system
(TMS):
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9 — Yt 9fa—u hu,0)

% =dVv + y[a(b— sz — h(u,v)] (2)
h(u,v) = i

where a,b, & , v and K are positive parameters, the ratio of diffusion
coefficients d = d;/d, is greater that one (normally take values greater that
12) and the scale factor 7 is a measure of the domain and control only the
dimension of patterns. (In the next we consider the parameters a=b= v =1.)

In order to investigate the type of spatial pattern generated by the full
nonlinear system (2) and to construct a pattern generator simulator, we must
discretize this system until to a simulator cellular automaton witch simulate
the nonlinear behavior of the (TMS).

A cellular automaton ( Wolfram [9], Weimar [10]) provide a framework for
a large class of discrete models with homogeneous interactions, characterized
by the following properties:

— They consist of a regular discrete lattice of cells.

— The evolution takes place in discrete time steps.

— Each cell is characterized by a state taken from a finite set of states.

— Each cell evolves according to the same rule which depends only on the
state of the cell and a finite number of neighboring cells.

— The neighborhood relation is local and uniform.

Cellular automata (CA) have been widely adopted in the sciences as simple
but powerful models of the real world because the complex patterns produced
by their long-time behaviors can mimic observations with tremendous accuracy.

In the particular case of mammalian coat patterns generation, a simple cel-
lular automata model of Turing’s system was succefully used by Gravan C. and
Lahoz-Beltra R. ([2]) to simulate the patterns formation on the zebra’s skin. In
2007 Boldea C. proposed (in [1]) a similar CA model, obtained using a genetic
algorithm aproach. But these models are only empirical experiences, witch do
not reflect correctly the nonlinear phenomena characterizing the Thomas Mur-
ray system. For this reason, we choused an ultra-discretization procedure that
preserves the continuous nonlinear behavior of the system (2).

3 Discrete and ultra-discrete reaction diffusion system
derived from the Thomas-Murray system

Cellular automata (CA) have been widely adopted in the sciences as simple
but powerful models of the real world because the complex pat-terns produced
by their long-time behaviors can mimic observations with tremendous accuracy
([9],[10]). However, the lack of mathematical tools makes prediction difficult in
CA models. , think was by The work of Tokihiro et al. [7] developed a method
to ultra-discretize continuous systems, based on a limit passing procedure and
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confirmed that there are integrable, predictable, Cellular Automata obtained
by this method.

First step to apply the method of Tokihiro et al. in order to obtain a discrete
valuated, discrete time, discrete space variables system (ultra-discrete system)
from equations (2), is to pass by a classical discrete version of this equation.

The discrete versions of the above (TM) system are obtained by replacing
the time derivative

61L(.’L'7y7t) U(.’L'7y7t+At) —U(.’L'7y7t)
—
ot At

- 1L(.T7 y,t+ 1) - U(.’L'7 Y, t) (3)

and the space derivatives by

Ju(z,y, 1)

— 1 — 4
e u(z+1,y,t) — u(z,y,t) (4)

O t
M — u(%y + 17t) - U(.’L‘7 Y, t) (5)
dy
Au — u(x + 17317 t) + U(.Z‘ - 17y7 t)+

+u(z,y + 1,t) +u(z,y — 1,t) — du(z, t)

By plugging these discretizations into the system (2), one obtain

U(.’L'Jf + 1) = U(.’L'7 Y, t) + [U(.Z‘ + 17y7 t) + U(.Z‘ - 17y7 t)+
u(z,y+ 1,t) +u(z,y — 1,t) — du(x, t)]—
—[1L(Z‘7 Y, U) -1+ h(u(x7 Y, t)ﬂ](.’& Y, t))]

v(x,t+1) =v(z,y,t) +dv(z + 1,y,t) + v(x — 1,y,t)+
+U(.’L‘7y + lvt) + U(.’L‘7y - lvt) - 411(.%‘7 t)]_
—[OZ(U(.T7 Y, t) - 1) + h(u(x7 Y, t)ﬂ](.’& Y, t))]

Next, we apply the ultra-discretization procedure on the system (7): given
a rational function in v and v, the ultra-discretization method requires that
we introduce new variables U and V defined by u = exp(U/d), v = exp(V/d).
After we take the limit a0+ of the equations using the identities:

: Ale B/e| _
EEI(Y)lJrElOg {e +e ] = max(A4, B)

lim elog {eA/E — eB/E] = Alt max(A, B)

e—0+
where
Aif A>B

Altmax(A,B) ={ 0,if A=B
~B,if A<B
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is the alternate maximum function. Ultra-discrete equations are naturally
posed on the max-plus semi-ring (defined in [3]).
The ultra-discretisation procedure transform the diffusion part of eq. (7)

w(z,t + 1) = u(z,y,t) + [u(z + 1,y,t) + uw(z — 1,y,t)+
u(z,y+ 1,t) +u(z,y — 1,t) — du(z, t)]
(8)
v(z,t+1) =v(z,y,t) +d- [v(z+ 1,y,t) +v(x—1,y,t)+
+U(.T7y + lvt) + U(.’L‘7y - lvt) - 411(.%‘7 t)]

into

u;erl max[u’, - Alt max(ul, gy, ul ), Alt max(ul_y ,,ul ),
Alt max(ul, 1 ul ), Altmax(ux pob ug )} (9)
i+l = maxful, Alt max( vh gy vk )+ 6, Altmax (vl 0k )

+6, Alt max(vt )+ 6, Alt max(ot vl 1,0k ,) 0}

ary+17 ary

where § =[In(d)] is a diffusion ratio parameter. The reaction part become:

h(u,v) = ul , + vl

— Alt max(max(u, 2L, k), )+ R=H(ul vl ,)
(u—1)+ H(u,v) — max[AltmaX( fry’ 1), H u;’yw;’y) = 10)
- yll (ux Y0 U; y)
a(v —1) + h(u,v) — max[Alt max(vl, ,, 1) + A, H(ul, ,, v} )] =
= Ws(ul, o ;y)

where R,A,k are constants. (We used the operations uv — U +V, cv —
V +kand vw+v — maxz(U, V) in the ultra-discrete limit, with k=/In(c)] for any
positive constant c.)

The ultra-discrete version of Thomas-Murray system (2) will be:

t+1 _
ulty = max (u’, o ul g o ul o ul Y+ ul y—1)
¢
- (ux 0 Uz, y)

(11)

t
Vel = max(u%w uby y T ul 1y T 0l
t ot
+4, Ugp y—1 + 6) LDQ(ugr U y)

Note that a supplementary reset condition must be introduced in order to
simulate the real physical phenomena: ux,yt+1 u’, ey <0 U;y «— 0 if the calcu-
lated values from (11) are negatives, correspondlng to a negative concentration
of a morphogene.

4 Simulation results and conclusions

The system (11) can be used to define a non-standard cellular bi-valuated

. . P
automaton, according to each cell a pair of values C ,/(t) = (ug ,, v, , ), where
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z,y,t € IN , and utx’w v;’y are real functions. The pattern generator simulator

is simply defined by

. t
oL itz (12)
,J . t
i 0, if uf; < vy

for i,5,t € 2 C IN . Conventionally, we consider that ” 1”is associated
with colored cells, and ”0” correspond to the “white” cells.
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Fig. 1. Initial configuration of the cell automaton. Only the presence of activator is
represented.

Fig. 2. Example of a generated pattern for § =R=A=0
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Fig. 3. Example of a generated pattern for § =R=1

For the purpose of testing the reaction diffusion simulation we ran some sim-
ulations with different parameters to see what kinds of patterns would be pro-
duced. In the simulations we used two lattices for the initial values of (uf, ,,v% )
with equal concentrations of each morphogene. Each cell take the initial value
u%y < 1 with a certain probability p,, and the initial value vgﬁy «— 1, with a
certain probability p;, in rest any initial state become null (see Fig.1).

The more that 50 numerical experiments realized by the authors permit to
remark that the CA model described by eqn. (11) is always superior limited
by a maximum value and the generated patterns become stable after a certain
time.

The Figures 2 and 3 shows the results of a reaction diffusion simulation
which we carried out using a fluctuation of the parameters of the model.

In conclusion, the simulation results are consistent with the general pic-
ture of pattern modeling and simulation based on Turing’s reaction-diffusion
scheme. The cell automaton P from (12) present a similar nonlinear behavior
like the full continuous Thomas-Murray system (2).
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