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Abstract. The paper present an alternative approach to the determi-
nation of a cellular automaton simulator for the stable patterns genera-
tion and the evolution of the mammals skin models. The proposed sim-
ulator uses the ultra-discrete version of an important reaction-diffusion
systems arising from the bio-mathematics domain: the Thomas-Murray
reaction-diffusion system.

Keywords: Turing reaction-diffusion system, cellular automata, mod-
eling biological patterns

Math. Subject Classification 2000: 92B05; 68W20

1 Introduction

The Reaction-Diffusion modeling and simulations, particularly in a sense of
chemical computation or in the domain of biophysics, becomes a hot topic of
computer science, physics and chemistry.

The Reaction Diffusion process is one in which a number of substances or
morphogens can diffuse over a surface and react with each other to produce
stable patterns on the surface. This mechanism has been studied by biologists
as well as mathematicians as the system, which consists of a series of non-
linear coupled partial differential equations, is thought to be responsible for
pattern formation in nature, such as the patterns on an animal’s coat. Work
on reaction diffusion began when Alan Turing proposed a mechanism which
could explain the development of animal embryos and the fact that they can
be self-organizing.

The pattern generating reaction-diffusion systems are governed by a set of
coupled partial differential equations as seen above. The problem with simulat-
ing a system such as this is that the equations are continuous. This means that
the equation represents the entire solution space of the system which has an
infinite number of values for time and space. The continuous nature of the sys-
tem makes it very difficult to simulate on a computer which by nature cannot
handle continuous systems.

We must therefore discretize these equations so that we can simulate the
system on a grid or lattice which can be used in a computer. This discretization
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is done on a lattice where the simulation takes place. The simulation method
used is that of cellular automata.

In 2007 I proposed a very simple CA model that can simulate the zebra
skin patterns formation (see [1]). This model was constructed beginning from
the Yang discretization of Turing’s system, following the approach of Gra-
van C. and Lahoz-Beltra R.([2]). The purpose of the present paper approach
is to propose an alternative approach to construct a pattern generator sim-
ulation for mammals skin models (leopard, tiger or giraffe), obtained by a
direct ultra-discretization procedure applied to the Thomas-Murray Reaction-
Diffusion System, and to verify if the ultra-discretization method preserves the
reaction-diffusion phenomena in this particular case.

2 The Thomas-Murray system (TMS)

In 1952 Turing ([8]) published a paper suggesting that, under certain con-
ditions, some chemicals can react and diffuse from an initially nearly homoge-
neous state to create spatial stable patterns as a consequence of the breakdown
of symmetry and homogeneity. Turing proposed that the temporal variation of
the concentrations of two different chemicals, named by Turing as morphogens
(the activator morphogen u and the inhibitor morphogen uv), both diffusible but
at different rates (d, and d;), can create patterns on an initially homogeneous
tissue by reacting in accordance with some nonlinear functions f and g:

The general form of Turing’s Reaction-Diffusion systems is

%

{ u — 4, Vu+ f(u,v) (1)
S = diVv + g(u,v)

where dg, d; are diffusion constants, x, y are the spatial coordinates and
u, v are functions of x, y and t.

In Turing’s model, the activator morphogen u activates the production of
itself and the production of the inhibitor v , whereas v inhibits the production
of itself and decreases the activator « production.

More that twenty years later, Thomas ([6]) proposed a model of enzyme
reaction, based on the Turing’s Reaction Diffusion system. This particular sys-
tem was largely studied by Murray ([4], [5] Chap.15) as the possible mechanism
responsible for laying down most of the mammals coat spacing patterns. The
model assumes the animal skin is formed by a uniform distribution of pigmented
cells (black, state 1), differentiated by melanocytes, and undifferentiated cells
(white, state 0). Melanocytes produce the activator morphogen u which stimu-
lates the transition from state 0 to 1 of nearby undifferentiated cells, as well as
the inhibitor morphogen v promoting the opposite transition, thus from state 1
to 0, for nearby differentiated cells. The time evolution of the concentrations of
activator/inhibitor morphogenes is determined by the Thomas-Murray system
(TMS):
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% =dVv + y[a(b— sz — h(u,v)] (2)
h(u,v) = i

where a,b, & , v and K are positive parameters, the ratio of diffusion
coefficients d = d;/d, is greater that one (normally take values greater that
12) and the scale factor 7 is a measure of the domain and control only the
dimension of patterns. (In the next we consider the parameters a=b= v =1.)

In order to investigate the type of spatial pattern generated by the full
nonlinear system (2) and to construct a pattern generator simulator, we must
discretize this system until to a simulator cellular automaton witch simulate
the nonlinear behavior of the (TMS).

A cellular automaton ( Wolfram [9], Weimar [10]) provide a framework for
a large class of discrete models with homogeneous interactions, characterized
by the following properties:

— They consist of a regular discrete lattice of cells.

— The evolution takes place in discrete time steps.

— Each cell is characterized by a state taken from a finite set of states.

— Each cell evolves according to the same rule which depends only on the
state of the cell and a finite number of neighboring cells.

— The neighborhood relation is local and uniform.

Cellular automata (CA) have been widely adopted in the sciences as simple
but powerful models of the real world because the complex patterns produced
by their long-time behaviors can mimic observations with tremendous accuracy.

In the particular case of mammalian coat patterns generation, a simple cel-
lular automata model of Turing’s system was succefully used by Gravan C. and
Lahoz-Beltra R. ([2]) to simulate the patterns formation on the zebra’s skin. In
2007 Boldea C. proposed (in [1]) a similar CA model, obtained using a genetic
algorithm aproach. But these models are only empirical experiences, witch do
not reflect correctly the nonlinear phenomena characterizing the Thomas Mur-
ray system. For this reason, we choused an ultra-discretization procedure that
preserves the continuous nonlinear behavior of the system (2).

3 Discrete and ultra-discrete reaction diffusion system
derived from the Thomas-Murray system

Cellular automata (CA) have been widely adopted in the sciences as simple
but powerful models of the real world because the complex pat-terns produced
by their long-time behaviors can mimic observations with tremendous accuracy
([9],[10]). However, the lack of mathematical tools makes prediction difficult in
CA models. , think was by The work of Tokihiro et al. [7] developed a method
to ultra-discretize continuous systems, based on a limit passing procedure and
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confirmed that there are integrable, predictable, Cellular Automata obtained
by this method.

First step to apply the method of Tokihiro et al. in order to obtain a discrete
valuated, discrete time, discrete space variables system (ultra-discrete system)
from equations (2), is to pass by a classical discrete version of this equation.

The discrete versions of the above (TM) system are obtained by replacing
the time derivative

61L(.’L'7y7t) U(.’L'7y7t+At) —U(.’L'7y7t)
—
ot At

- 1L(.T7 y,t+ 1) - U(.’L'7 Y, t) (3)

and the space derivatives by

Ju(z,y, 1)

— 1 — 4
e u(z+1,y,t) — u(z,y,t) (4)

O t
M — u(%y + 17t) - U(.’L‘7 Y, t) (5)
dy
Au — u(x + 17317 t) + U(.Z‘ - 17y7 t)+

+u(z,y + 1,t) +u(z,y — 1,t) — du(z, t)

By plugging these discretizations into the system (2), one obtain

U(.’L'Jf + 1) = U(.’L'7 Y, t) + [U(.Z‘ + 17y7 t) + U(.Z‘ - 17y7 t)+
u(z,y+ 1,t) +u(z,y — 1,t) — du(x, t)]—
—[1L(Z‘7 Y, U) -1+ h(u(x7 Y, t)ﬂ](.’& Y, t))]

v(x,t+1) =v(z,y,t) +dv(z + 1,y,t) + v(x — 1,y,t)+
+U(.’L‘7y + lvt) + U(.’L‘7y - lvt) - 411(.%‘7 t)]_
—[OZ(U(.T7 Y, t) - 1) + h(u(x7 Y, t)ﬂ](.’& Y, t))]

Next, we apply the ultra-discretization procedure on the system (7): given
a rational function in v and v, the ultra-discretization method requires that
we introduce new variables U and V defined by u = exp(U/d), v = exp(V/d).
After we take the limit a0+ of the equations using the identities:

: Ale B/e| _
EEI(Y)lJrElOg {e +e ] = max(A4, B)

lim elog {eA/E — eB/E] = Alt max(A, B)

e—0+
where
Aif A>B

Altmax(A,B) ={ 0,if A=B
~B,if A<B
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is the alternate maximum function. Ultra-discrete equations are naturally
posed on the max-plus semi-ring (defined in [3]).
The ultra-discretisation procedure transform the diffusion part of eq. (7)

w(z,t + 1) = u(z,y,t) + [u(z + 1,y,t) + uw(z — 1,y,t)+
u(z,y+ 1,t) +u(z,y — 1,t) — du(z, t)]
(8)
v(z,t+1) =v(z,y,t) +d- [v(z+ 1,y,t) +v(x—1,y,t)+
+U(.T7y + lvt) + U(.’L‘7y - lvt) - 411(.%‘7 t)]

into

u;erl max[u’, - Alt max(ul, gy, ul ), Alt max(ul_y ,,ul ),
Alt max(ul, 1 ul ), Altmax(ux pob ug )} (9)
i+l = maxful, Alt max( vh gy vk )+ 6, Altmax (vl 0k )

+6, Alt max(vt )+ 6, Alt max(ot vl 1,0k ,) 0}

ary+17 ary

where § =[In(d)] is a diffusion ratio parameter. The reaction part become:

h(u,v) = ul , + vl

— Alt max(max(u, 2L, k), )+ R=H(ul vl ,)
(u—1)+ H(u,v) — max[AltmaX( fry’ 1), H u;’yw;’y) = 10)
- yll (ux Y0 U; y)
a(v —1) + h(u,v) — max[Alt max(vl, ,, 1) + A, H(ul, ,, v} )] =
= Ws(ul, o ;y)

where R,A,k are constants. (We used the operations uv — U +V, cv —
V +kand vw+v — maxz(U, V) in the ultra-discrete limit, with k=/In(c)] for any
positive constant c.)

The ultra-discrete version of Thomas-Murray system (2) will be:

t+1 _
ulty = max (u’, o ul g o ul o ul Y+ ul y—1)
¢
- (ux 0 Uz, y)

(11)

t
Vel = max(u%w uby y T ul 1y T 0l
t ot
+4, Ugp y—1 + 6) LDQ(ugr U y)

Note that a supplementary reset condition must be introduced in order to
simulate the real physical phenomena: ux,yt+1 u’, ey <0 U;y «— 0 if the calcu-
lated values from (11) are negatives, correspondlng to a negative concentration
of a morphogene.

4 Simulation results and conclusions

The system (11) can be used to define a non-standard cellular bi-valuated

. . P
automaton, according to each cell a pair of values C ,/(t) = (ug ,, v, , ), where
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z,y,t € IN , and utx’w v;’y are real functions. The pattern generator simulator

is simply defined by

. t
oL itz (12)
,J . t
i 0, if uf; < vy

for i,5,t € 2 C IN . Conventionally, we consider that ” 1”is associated
with colored cells, and ”0” correspond to the “white” cells.
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Fig. 1. Initial configuration of the cell automaton. Only the presence of activator is
represented.

Fig. 2. Example of a generated pattern for § =R=A=0
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Fig. 3. Example of a generated pattern for § =R=1

For the purpose of testing the reaction diffusion simulation we ran some sim-
ulations with different parameters to see what kinds of patterns would be pro-
duced. In the simulations we used two lattices for the initial values of (uf, ,,v% )
with equal concentrations of each morphogene. Each cell take the initial value
u%y < 1 with a certain probability p,, and the initial value vgﬁy «— 1, with a
certain probability p;, in rest any initial state become null (see Fig.1).

The more that 50 numerical experiments realized by the authors permit to
remark that the CA model described by eqn. (11) is always superior limited
by a maximum value and the generated patterns become stable after a certain
time.

The Figures 2 and 3 shows the results of a reaction diffusion simulation
which we carried out using a fluctuation of the parameters of the model.

In conclusion, the simulation results are consistent with the general pic-
ture of pattern modeling and simulation based on Turing’s reaction-diffusion
scheme. The cell automaton P from (12) present a similar nonlinear behavior
like the full continuous Thomas-Murray system (2).
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