Particular Signature Cryptanalysis

Nicolae CONSTANTINESCU, Mirel COŞULSCHI and Mihai GABROVEANU

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
nikyc, mirelc, mihaiug@central.ucv.ro

Abstract. A fixed-pattern padding consists in concatenating to the message m a fixed pattern P. An RSA signature for the padding P and message m is obtained by raising the message m and the padding P to the private decryption exponent d. In this paper we prove that the security of RSA fixed-pattern padding is insecure for messages at least two-thirds of the size of n, the RSA public modulus.

Keywords: RSA-signature, fixed pattern padding Math. Subject Classification 2000: 94A60; 94A62

1 Introduction

RSA is a cryptosystem invented in 1977 by R. Rivest, A. Shamir and L. Adleman [8]. It is now the most widely used cryptosystem because its simple underlying mathematics, based on number theory which was known back at least 150 years ago. Common uses of RSA are: privacy, data protection, digital signatures, authenticity and security of data transferred between web servers.

RSA uses an encryption exponent denoted by e, a decryption exponent denoted by d, and the modulus denoted by n. To sign a message m using RSA a user must first compute its hash value using a hash function and this is due to the slowness in computation when signing the entire message. This is rather a standard procedure recommended by PKCS #1 v. 2.0 [9]. So, a signature of RSA would be obtained as

$$s = (H(m))^d \pmod{n}$$

Observe the use of d; this exponent is also called the private exponent, which means it is the private key of a user in an RSA cryptosystem. By applying the power d to the hash of the message we obtain a fixed length signature which can be verified by anyone, computing

$$s^e = H'(m)^{d \cdot e} = H'(m) \pmod{n}$$

This way the verifier obtains the hash value contained in the signature, by computing the hash for the message m and comparing H' with H obtained

from m he can be certain that the message was truly signed by the right person.

This paper considers RSA signature without the use of hash functions but with fixed pattern padding. This means if someone who wishes to sign a message m, he adds a padding P to the message and then obtains a signature by computing

$$s = (P|m)^d \pmod{n}$$

The more general case is where RSA signatures in which a simple affine redundancy is used. To sign a message m, the signer first computes

$$R(m) = \omega \cdot m + a \tag{1}$$

where ω is the multiplicative redundancy and a is the additive redundancy. Considering the above representation a message m would be signed as:

$$s = R(m)^d \pmod{n}$$

A left-padded redundancy scheme P|m is obtained by taking $\omega=1$ and $a=P\cdot 2^l$, whereas a right-padding redundancy scheme m|P is obtained by taking $\omega=2^l$ and a=P.

Previous attacks by De Jonge and Chaum [1], and by Girault and Misarsky [2] were multiplicative attacks against RSA signatures with affine redundancy (see [5] for a complete report) and their attacks were based on the extended Euclidean algorithm. De Jonge and Chaum presented a multiplicative attack for which $\omega=1$, and the size of the message m was at least two thirds of the RSA modulus n

$$|m| \succ \frac{2}{3}|n|$$

The first attack was extended by Girault and Misarsky; they succeeded in reducing the size of the message at $\frac{1}{2}$ of the modulus n, and their attack applies to any value ω and a, so

$$|m| \succ \frac{1}{2}|n|$$

Girault and Misarsky also extended the multiplicative attacks to RSA signatures with modular redundancy:

$$R(m) = \omega_1 \cdot m + \omega_2 \cdot (m \mod b) + a \tag{2}$$

where ω_1, ω_2 is the multiplicative redundancy, a is the additive redundancy and b is the modular redundancy.

In this paper we extend Girault and Misarsky's attack against RSA signatures with afine redundancy to messages of size as small as one third of the size of the modulus, thus

$$|m| \succ \frac{1}{3}|n|$$

2 The proposed attack

This section concentrates on extending the attack of Girault and Misarsky's multiplicative attack on RSA signatures with affine redundancy to a level where we have the size of the message equal to one third of the RSA modulus n. A multiplicative attack is an attack in which the redundancy function of a message can be expressed as a multiplicative combination of the redundancy functions of other messages. With respect to this we search for four messages, m_1, m_2, m_3, m_4 , which are at least one third of the size of the modulus n, and verify the following equation

$$R(m_1) \cdot R(m_2) = R(m_3) \cdot R(m_4) \pmod{n}$$
(3)

Message m_1 , is the message whose signature will be forged, this can be done by computing

$$R(m_1)^d = \frac{R(m_3)^d \cdot R(m_4)^d}{R(m_2)^d} \pmod{n}$$

From (3) we obtain:

$$(\omega \cdot m_1 + a) \cdot (\omega \cdot m_2 + a) = (\omega \cdot m_3 + a) \cdot (\omega \cdot m_4 + a) \pmod{n}$$

Denoting $P = a/\omega \mod n$, we obtain:

$$(P + m_1) \cdot (P + m_2) = (P + m_3) \cdot (P + m_4) \pmod{n}$$

For the following substitutions

$$t = m_3
 y = m_2 - m_3
 x = m_1 - m_3
 z = m_4 - m_1 - m_2 + m_3$$
(4)

the following equation holds

$$((P+t)+x)\cdot ((P+t)+y) = (P+t)\cdot ((P+t)+x+y+z) \; (\text{mod } n)$$

which simplifies into

$$x \cdot y = (P+t) \cdot z \pmod{n} \tag{5}$$

Next we need to determine the values x,y,z and t with respect to 5. First, we obtain two integers z and u such that

$$\begin{aligned} P \cdot z &= u \pmod{n} \\ \text{with } \begin{cases} -n^{\frac{1}{2}} < z < n^{\frac{1}{3}} \\ 0 < u < 2 \cdot n^{\frac{2}{3}} \end{cases} \end{aligned}$$

One solution is suggested by [3]. Finding a good approximation to the fraction $\frac{P}{n}$ can be done efficiently by developing it in continued fractions. This implies using the extended Euclidean algorithm to P and n. A solution is found such that |z| < Z and 0 < u < U if $Z \cdot U > n$, which is the case here with $Z = n^{\frac{1}{3}}$ and $U = 2 \cdot n^{\frac{2}{3}}$.

We then select an integer y such that

$$n^{\frac{1}{3}} < y < 2 \cdot n^{\frac{1}{3}}$$

and gcd(y, z) = 1. We find the non-negative integer t < y such that:

$$t \cdot z = -u \pmod{n}$$

which is possible since qcd(y, z) = 1. Then we take

$$x = \frac{u + t \cdot z}{y} \le 4n^{\frac{1}{3}}$$

and obtain

$$P \cdot z = u = x \cdot y - t \cdot z \pmod{n}$$

which gives equation (5), with x, y, z and t being all smaller than $4 \cdot n^{\frac{1}{3}}$. From x, y, z, t we derive, using (4), four messages m_1, m_2, m_3 and m_4 , each of size one third the size of n:

$$m_1 = x + t$$

 $m_2 = y + t$
 $m_3 = t$
 $m_4 = x + y + z + t$ (6)

Since $-n^{1/3} < z < n^{1/3}$ and $y \ge n^{1/3}$, we have y+z>0, which gives using $u \ge 0$

$$x + t = \frac{u + t \cdot (y + z)}{y} \ge 0$$

which shows that the four integers m1, m2, m3 and m3 are non-negative, and we have

$$R(m_1) \cdot R(m_2) = R(m_3) \cdot R(m_4) \pmod{n}$$

The complexity of our attack is polynomial in the size of n.

3 Existence of selective forgery

The attack discussed in the previous section is existential which means that the attacker needs to find the four messages required for forgery; if the messages m_2, m_3, m_4 do not exist then the attack is not possible. This section deals with the possibility of a selective forgery attack, but in this case the attack no longer runs in polynomial time. Let m_3 be the message whose signature must

be forged. Letting x,y,z and t as in (4), we compute two integers z and u such that

$$\begin{array}{l} (P+t) \cdot z = u \; (\text{mod } n) \\ \text{with } \begin{cases} -n^{\frac{1}{2}} < z < n^{\frac{1}{3}} \\ 0 < u < 2 \cdot n^{\frac{2}{3}} \\ \end{array}$$

We then factor u, and try to write u as the product $x \cdot y$ of two integers of roughly the same size, so that eventually we have four integers x, y, z, t of size roughly one third of the size of the modulus, with:

$$x \cdot y = (P + t) \cdot z \pmod{n}$$

which gives again

$$R(m_1) \cdot R(m_2) = R(m_3) \cdot R(m_4) \pmod{n}$$

The signature of m_3 can now be forged using the signatures of m_1, m_2 and m_4 . For a 512-bit modulus the selective forgery attack is truly practical. For a 1024-bit modulus the attack is more demanding but was still implemented with success.

4 Conclusions

We have extended Girault and Misarsky's attack on RSA signatures with afine redundancy: we described a chosen message attack against RSA signatures with affine redundancy for messages as small as one third of the size of the modulus. Consequently, when using a fixed padding P|m or m|P, the size of P must be at least two-thirds of the size of n. Our attack is polynomial in the length of the modulus. It remains an open problem to extend this attack to even smaller messages (or, equivalently, to bigger fixed-pattern constants): we do not know if there exists a polynomial time attack against RSA signatures with affine redundancy for messages shorter than one third of the size of the modulus. However, we think that exploring to what extent a ne padding is malleable increases our understanding of RSA's properties and limitations.

References

- W. De Jonge and D. Chaum, Attacks on some RSA signatures. Proceedings of Crypto '85, LNCS vol. 218, Springer-Verlag, 1986, pp. 18-27.
- [2] M. Girault and J.-F. Misarksy, Selective forgery of RSA signatures using redundancy, Proceedings of Eurocrypt '97, LNCS vol. 1233, Springer-Verlag, 1997, pp. 495-507.
- [3] M. Girault, P. Toffin and B. Vallee, Computation of approximation L-th roots modulo n and application to cryptography, Proceedings of Crypto '88, LNCS vol. 403, Springer-Verlag, 1988, pp. 100-117.

- [4] A. K. Lenstra, H.W. Lenstra and L. Lovasz, Factoring polynomials with rational coeficients, Mathematische Annalen, vol. 261, n. 4, 1982, pp. 515-534.
- [5] J.-F. Misarsky, How (not) to design RSA signature schemes, Public-key cryptography (PKC), Springer-Verlag, Lectures notes in computer science 1431, pp. 14-28, 1998.
- [6] J.-F. Misarsky, A multiplicative attack using LLL algorithm on RSA signatures with redundancy, Proceedings of Crypto '97, LNCS vol. 1294, Springer-Verlag, pp.221-234.
- [7] T. Okamoto and A. Shiraishi, A fast signature scheme based on quadratic inequalities, Proc. of the 1985 Symposium on Security and Privacy, April 1985, Oakland,CA.
- [8] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, CACM 21, 1978.
- [9] RSA Laboratories, PKCS #1 : RSA cryptography specifications, version 2.0, September 1998.