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Abstract. A fixed-pattern padding consists in concatenating to the
message m a fixed pattern P. An RSA signature for the padding P and
message m is obtained by raising the message m and the padding P
to the private decryption exponent d. In this paper we prove that the
security of RSA fixed-pattern padding is insecure for messages at least
two-thirds of the size of n, the RSA public modulus.
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1 Introduction

RSA is a cryptosystem invented in 1977 by R. Rivest, A. Shamir and L.
Adleman [8]. It is now the most widely used cryptosystem because its simple
underlying mathematics, based on number theory which was known back at
least 150 years ago. Common uses of RSA are: privacy, data protection, digital
signatures, authenticity and security of data transferred between web servers.

RSA uses an encryption exponent denoted by e, a decryption exponent
denoted by d, and the modulus denoted by n. To sign a message m using RSA
a user must first compute its hash value using a hash function and this is due
to the slowness in computation when signing the entire message. This is rather
a standard procedure recommended by PKCS #1 v. 2.0 [9]. So, a signature of
RSA would be obtained as

5= (H(m))( mod n)

Observe the use of d; this exponent is also called the private exponent, which
means it is the private key of a user in an RSA cryptosystem. By applying the
power d to the hash of the message we obtain a fixed length signature which
can be verified by anyone, computing

5¢ = H'(m)%°¢ = H'(m)( mod n)

This way the verifier obtains the hash value contained in the signature , by
computing the hash for the message m and comparing H' with H obtained
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from m he can be certain that the message was truly signed by the right
person.

This paper considers RSA signature without the use of hash functions but
with fixed pattern padding. This means if someone who wishes to sign a mes-
sage m, he adds a padding P to the message and then obtains a signature by
computing

s = (P|m)?( mod n)

The more general case is where RSA signatures in which a simple affine redun-
dancy is used. To sign a message m, the signer first computes

R(m)=w-m+a (1)

where w is the multiplicative redundancy and a is the additive redundancy.
Considering the above representation a message m would be signed as:

s = R(m)?( mod n)

A left-padded redundancy scheme P|m is obtained by taking w = 1 and a =
P - 2! whereas a right-padding redundancy scheme m|P is obtained by taking
w=2and a = P.

Previous attacks by De Jonge and Chaum [1], and by Girault and Misarsky
[2] were multiplicative attacks against RSA signatures with affine redundancy
(see [5] for a complete report) and their attacks were based on the extended
Euclidean algorithm. De Jonge and Chaum presented a multiplicative attack
for which w = 1, and the size of the message m was at least two thirds of the
RSA modulus n

jm| = 21|
m| > =|n
3
The first attack was extended by Girault and Misarsky; they succeeded in

reducing the size of the message at % of the modulus n, and their attack applies
to any value w and a, so

| = =n]
=3

Girault and Misarsky also extended the multiplicative attacks to RSA signa-
tures with modular redundancy:

R(m) =wi-m+wsz - (m mod b) +a (2)

where w1, ws is the multiplicative redundancy, a is the additive redundancy and
b is the modular redundancy.

In this paper we extend Girault and Misarsky’s attack against RSA signa-
tures with afine redundancy to messages of size as small as one third of the size
of the modulus, thus

] = 1|
m 3n|
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2 The proposed attack

This section concentrates on extending the attack of Girault and Misarsky’s
multiplicative attack on RSA signatures with affine redundancy to a level where
we have the size of the message equal to one third of the RSA modulus n.
A multiplicative attack is an attack in which the redundancy function of a
message can be expressed as a multiplicative combination of the redundancy
functions of other messages. With respect to this we search for four messages,
mi,ma, m3, mq, which are at least one third of the size of the modulus n, and
verify the following equation

R(WLl) . R(WLQ) = (3)
R(ms3) - R(m4) (mod n)
Message m1, is the message whose signature will be forged, this can be done
by computing
R(WLg)d . R(WL4)d

Rm) = =gy

(mod n)
From (3) we obtain:

(w-mi+a) (w-mg+a) =
(w'nL3+a)'(W'WL4—|—a) (mod n)

Denoting P = a/w mod n, we obtain:

(P+ WL1) . (P+ WLQ) =
(P +mg3) - (P+my) (mod n)

For the following substitutions

t=mg
Yy =ma — M3 (4)
r =mi1—ms3
Z=1my—mi— Mo+ ms
the following equation holds
(P+t)+z)- (P+t)+y)=
(P+t)- (P+t)+z+y+2) (modn)
which simplifies into
z-y=(P+t)- 2z (mod n) (5)

Next we need to determine the values x,y, z and t with respect to 5. First, we
obtain two integers z and u such that
P z=wu (mod n)

1 1

. —n2 <z<ns
with 2
O<u<2-n3
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One solution is suggested by [3]. Finding a good approximation to the fraction
le can be done efficiently by developing it in continued fractions. This implies
using the extended Euclidean algorithm to P and n. A solution is found such
that |z] < Z and 0 < u < U if Z-U > n, which is the case here with Z = n3
and U =2 n3.

We then select an integer y such that

=
@l

n3 <y <208
and ged(y, z) = 1. We find the non-negative integer ¢ < y such that:
t-z=—u (modn)
which is possible since ged(y, z) = 1. Then we take

x:u+t.2§4n%
Yy
and obtain
P-z=u=z-y—1t-z (modn)

which gives equation (5), with z,y, z and ¢ being all smaller than 4 - n3. From
x,y,z,t we derive, using (4), four messages m1,mg, m3 and mu, each of size
one third the size of n:

mi=x+1
mo =9y +1
ms =1 (6)

my=x+y+z+1t

Since —n!/3 < z < n'/3 and y > n'/3, we have y + z > 0, which gives using
u>0

u+tt-(y+z) -0

rt+t=

which shows that the four integers m1l, m2, m3 and m3 are non-negative, and

we have
R(mq) - R(mg) = R(ms) - R(my) (mod n)

The complexity of our attack is polynomial in the size of n.

3 Existence of selective forgery

The attack discussed in the previous section is existential which means that
the attacker needs to find the four messages required for forgery; if the messages
ms, ms, my do not exist then the attack is not possible. This section deals with
the possibility of a selective forgery attack, but in this case the attack no
longer runs in polynomial time. Let mg3 be the message whose signature must
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be forged. Letting z,y, z and ¢ as in (4), we compute two integers z and u such
that
(P+1t)-z=mwu (modn)

. —n? <z<ni
with 2
O<u<2-n3

We then factor u, and try to write u as the product = - y of two integers of
roughly the same size, so that eventually we have four integers z, v, z,t of size
roughly one third of the size of the modulus, with:

z-y=(P+t) 2z (mod n)
which gives again
R(m1) - R(mg) = R(ms3) - R(m4) (mod n)

The signature of ms can now be forged using the signatures of mq, mo and
my. For a 512-bit modulus the selective forgery attack is truly practical. For
a 1024-bit modulus the attack is more demanding but was still implemented
with success.

4 Conclusions

We have extended Girault and Misarsky’s attack on RSA signatures with
afine redundancy: we described a chosen message attack against RSA signatures
with affine redundancy for messages as small as one third of the size of the
modulus. Consequently, when using a fixed padding P|m or m|P, the size of
P must be at least two-thirds of the size of n. Our attack is polynomial in the
length of the modulus. It remains an open problem to extend this attack to
even smaller messages (or, equivalently, to bigger fixed-pattern constants): we
do not know if there exists a polynomial time attack against RSA signatures
with affine redundancy for messages shorter than one third of the size of the
modulus. However, we think that exploring to what extent a.ne padding is
malleable increases our understanding of RSA’s properties and limitations.
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