Usage of Advanced Data Structure for
Improving Efficiency for Large (n,m)
Permutations

Mirel COSULSCHI, Mihai GABROVEANU and Nicolae
CONSTANTINESCU

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
mirelc, mihaiug, nikycQ@central.ucv.ro

Abstract. Choosing the right data structure has been proved many
times to have a major role toward design of an optimal algorithm. In
this paper, we will present two classical algorithms (together with their
associated classical data structures, array and linked list) for finding
the (n, m)-Josephus permutations, our contribution being materialized
in the third algorithm and the usage of an interesting data structure.
Keywords: Josephus problem, data structures, binary indexed tree,
algorithm complexity

Math. Subject Classification 2000: 68P05; 68R05; 68WO01

1 Introduction

A well-known theoretical computer science and mathematical problem is
the Josephus problem (or Roman roulette) ! which has as starting point the
legend ([1], [9]) about the famous Jewish historian from the first century, Titus
Flavius Josephus 2, known also as apologist of priestly and royal ancestry:

In the Jewish revolt against Rome, Josephus and 39 of his comrades
were holding out against the Romans in a cave. With defeat imminent,
they resolved that, like the rebels at Masada, they would rather die than
be slaves to the Romans. They decided to arrange themselves in a circle.
One man was designated as number one, and they proceeded clockwise
killing every seventh man. Josephus (according to the story) was among
other things an accomplished mathematician; so he instantly figured
out where he ought to sit in order to be the last to go. But when the
time came, instead of killing himself he joined the Roman side.

In other words, there are n places arranged in a circle, numbered clockwise
1,2,...n and occupied. Every m-th element is removed from the set (we must

! http://en.wikipedia.org/wiki/Josephus_problem
2 http://en.wikipedia.org/wiki/Josephus

Ussing ADS for Large (n, m) Permutations 57

notice that the counting started at number 1). The first element eliminated is
the m-th element; in order to exclude another element we have to count again
m places, without taking into consideration the vacancy places (a vacancy place
results after removal of some element at a previous step).

The first question is if someone would like to be the last survivor, then
what place should him occupy initially? We will name that the basic Josephus
problem, and the answer of the question will be given by the function J,,,(n).
Another interesting problem is to find the order in which the initial elements
were removed from the set ((n,m)-Josephus permutation). The number of the
ith element excluded from the circular arrangement will be denoted as J(n, m,)
(n>1m>1,1<i<n)]|7].

Besides this two problems, there are also interesting questions that were
investigated in the literature ([10], [16], [11], [12], [15]).

2 Previous work

Knuth describes one of the best algorithms known so far ([6], [14]) for
basic Josephus problem, whose complexity is O(log% (mn —mn)). This elegant
solution has the following ideas [6]:

(m)
n

a) Define a sequence of numbers D", where

D = " D] n 100" =1

b) Determine the least integer k such that D,(cm) >(@—1)-n
c¢) Compute Jy(n) =m-n+1— D,(cm)

In [5], the author presents an improvement to this method, resulting an
algorithm with O(m + log% ().

Another algorithm, whose complexity is O(n-log(m)), for finding the values
of the function J,,,(n) was developed by Lloyd in 1983 ([13]).

In [14] there are studied some interesting mathematical properties regarding
Knuth’s method sketched above.

Augenstein et al [2] presents a systematic approach of the (n, m)-Josephus
permutation (see also [16] and the rank tree usage ®). For generating the se-
quence of numbers resulted from the elimination process, they have chosen de
simulation approach. In their article it is presented the idea of using an almost
completely strictly binary tree (ACSB).

Definition 1. An almost completely strictly binary tree is characterized by the
following properties:

1. every node in the tree has either 0 or 2 sons

3 http://jupiter.kaist.ac.kr /~otfried /cs206 /notes /ranktrees.pdf

58 M. Cosulschi et al.

2. for some K, every leaf in the tree is at level K or level K + 1
3. if a node in the tree has a right descendant at level K + 1, then all its left
descendants which are leafs are at level K + 1

The algorithm depicted there has O(n - log(n)) complexity given by the insert,
delete and select operations into the ACSB tree.

3 Obtaining the (n, m)-Josephus permutations

3.1 Algorithm 1: using a static data structure

The procedure ExtractTable (see Algorithm 1) uses for storage the array
table, where table; = 1 means that the i-th element is present while table; = 0
means this element was cast out. The lines 2-4 initialize the values from array
with 1 stating that, at the beginning, all the elements is present in the initial
set. The inner while (lines 10-15) counts p elements, which are still present in
the set. As an optimization, if p > #number of elements remained in the set,
then it will be counted only p mod (n — count + 1) elements. The first while
(lines 7-19) loops n times in order to extract all elements from the set.

The overall time complexity of Algorithm 1 is O(n?) while space complexity
is O(n). We will work toward improving this time complexity.

3.2 Algorithm 2: using a dynamic data structure

In the second algorithm (procedure ExtractList), we will use as an abstract
data type (ADT) [3] a list implemented through a dynamically linked list in-
stead of a static array. The extraction of an element from the set will materialize
through the removal of the element from the list, thus not being visited again
at the next loop. In order to get a better overview, the actions related to the
ADT list is only outlined, the details of implementation being skipped:

1. CreateNode(k) - allocate space for a node whose information is the value of
parameter k

2. AddNode(node) - appends the node at the end of the list

3. Locate(node, p, n; previous) - starting from the current node, counts p
elements, in order to locate the p-th node, and returns a reference to this
and also to the previous node

4. RemoveNext(node) - removes the next element of the current node

5. MoveNext(node; newNode) - moves to the right, with a position, the current
node, returning the value as newNode

The initialization step is performed now within the lines 2-7, while the
extraction step is fulfilled by the lines 14-21. Due to the usage of ADT list, the
time complexity of Algorithm 2 will be O(n - m’), where m’ = m mod n.

Ussing ADS for Large (n, m) Permutations 59

Algorithm 1 (n, m)-Josephus permutation variant 1

Require: n - the number of initial elements
k - the index of the first element removed
p - the step
Ensure: perm - the array with the extracted elements and their order
1: procedure EXTRACTTABLE(n, k, p; Perm)
2 for : «— 1,n do
3 table; — 1
4: end for
5: count «— 1,5 «— k
6: tablej < 0, perMmecount < J
7 while (count < n) do
8

steps «— 0
9: pr < p mod (n — count + 1)
10: while (steps < pr) do
11: J < next(j,n)
12: if (table; = 1) then
13: steps «— steps + 1
14: end if
15: end while
16: count <— count + 1
17: table; 0
18: PeErMcount <— .7

19: end while
20: end procedure

3.3 Algorithm 3: improving the generation algorithm

An improvement of the two previous presented methods that are already
known and makes use of classical data structures, array and linked list respec-
tively, would be to directly access the mth element and remove it instead of
counting through m integers one by one.

We will make use of a data structure who, although have been introduced
more than a decade ago, is still not widely known [4]. This data structure allows
the update and query operations to be performed in logarithmic time.

The seminal ides of the method has its inception from the observation that
every integer can be decomposed into a sum of appropriate powers of two - in
the same way the sum of a sequence of elements can be computed from the
sum of some subsequences subtotal.

Let’s suppose we have a sequence of elements v;,i = 1...n, where v; can
be interpreted as the frequency of a value with index i, while ¢; keeps the
cumulative frequency for index i: ¢; = v1 +v2 + ... + v;.

The structure is named binary indezed tree (BIT), and is implemented with
the help of an array a, where each element a; will be equal with the sum of the
elements from the sequence 4 — 2% 4-1...7 (k is the number of trailing 0’s from
the binary representation of number 7).

60 M. Cosulschi et al.

Algorithm 2 (n,m)-Josephus permutation variant 2

Require: n - the number of initial elements
k - the index of the first element removed

p - the step

Ensure: perm - the array with the extracted elements and their order

1: procedure EXTRACTLIST(n, k, p; perm)
2 for i +— 1,n do
3 tmp < CreateNode(i)
4 if (tmp # NULL) then
5: call AddN ode(tmp)
6 end if
7 end for
8 tmp < Locate(head, p, n; previous)
9: count < 1
10: PETMcount < tmp.value
11: call RemoveNext(previous)
12: call MoveN ext(previous,tmp)
13: n«—n-—1
14: while (n > 0) do
15: tmp < Locate(tmp, p, n; previous)
16: count <— count + 1
17: PETMecount < tmp.value
18: call RemoveN ext(previous)
19: call MoveNext(previous,tmp)
20: n+«—n-—1

21: end while
22: end procedure

Table 1.
11 2| 3| 4| 5| 6] 7 8 9| 10| 11| 12
vl 1] 0| 4 1] 2/ 0] 1 2 1 2 4 1
c| 1} 1| 5| 6 8 8 9 11| 12 4| 18| 19
a|l 1| 1| 4| 6| 2 2| 1] 11 1| 14 - 8

Table 2. Table with subsequences corresponding to each element from a

10

11

12

Us

Us...

v7 V1...8 Vg

Vy...

10

V11

V...

12

The reader can easily notice that a;

= v; if and only if ¢ is an odd number.
Also it is not necessary to keep the values of the vector v, because from the

Ussing ADS for Large (n, m) Permutations 61

values of the binary indexed tree can be reconstructed these original values:
v; = ¢; — ¢;_1, while ¢; can be obtained from the subroutine GetSum.

Eoe

rt

Fig. 1. The tree showing range of elements accumulated in their responsible node

In the tree from the figure 1, each bar represents the range of the elements
from v whose cumulative total value is stored in the topmost position. (e.g.
a12 = v12 + v11 + v1g + v9). The branching ratio of each node corresponds to
the number of trailing zeros in the associated binary representation, while the
depth at each node is the Hamming weight of its binary index [4].

Among the basic operations defined for this data structure, we will con-
centrate only in this paper on three of them, used in the Algorithm 6: getting
the cumulative frequency of an index, updating the table a in concordance
with a new value v for a certain index, and finding the position for which the
cumulative frequency has a specified value.

The name binary indexed tree is a result of the joint-venture between the
tree traversal algorithms and the binary representation of an index.

62 M. Cosulschi et al.

Updating the table An important technical issue aims at obtaining the least
significant 1 bit from the binary representation of a number. This operation
is usefull for the navigation back and forth among the elements of the binary
indexed tree, and can be done in several ways:

1. k =k and (—k) - bit AND (A) between a number and its two’s complement

2. k =k — (kand (k — 1)) - difference between the current number and bit
AND (A) between the same number and its predecessor

3. k =k and (2® — k) - where z is a number having the property 2 > N

Removing the least significant one bit of a number can also be done in more
than one method, strongly connected with the above variants: k = k— (kA (—k))
ork=kA(k-1).

Ezample 1. If k = 10110100, then k— 1 = 10110011, k and (k— 1) = 10110000,
while k — (k and (k — 1)) = 00000100, k = k xor (k and (k — 1)) = 00000100.

The number of iterations in the while group of instructions depends on the
number of one bits from the index k. In order to update the table a with the new
value v;, it is necessary to update all the elements a; where a; = ... +v; + ...
(subfrequencies a; that includes/cover the value of v;)

Algorithm 3 Set frequency value
Require: n - the total number of elements
k - the index of the element whose value must be set
value - the value to be set
a - the array with frequency
1: procedure SETVALUE(n, k, value, a)
2 while (k > n) do
3: ap < ar + value
4: k — k+ (k xor (k and (k—1)))
5
6:

end while
end procedure

Ezample 2. Tf we have the SetValue(16,9, 3, A), first the procedure will update
the value of ag, k = k + (k xor (k and (k — 1))) = 10, then, at the next step,
a1 being updated, while & = 10. At the third step a1o is assigned with a new
value and k£ becomes 16, while at the last step the a1 element is visited.

Getting the cumulative frequency The subroutine GetSum returns the
cumulative frequency of all elements between 1 and a specified upper limit, k.
k +— kA (k—1) strip off the least significant 1 bit from the binary representation
of the number k.

Ussing ADS for Large (n, m) Permutations 63

Algorithm 4 Get frequency sum

Require: k - the number of initial elements
a - the array with frequency

1: function GETSUM(k,a)
2 sum «— 0

3 while (k > 0) do

4: sum «— sum + ay
5: k<« kand (k—1)
6 end while
7 return sum
8: end function

Ezample 3. By example, if kK = 7 the GetSum(k) will be composed from a7 +
a6 + a4 = V7 + V5.6 + V1.4

The number of the elements involved in the sum is less or equal than the
number of digits from the binary representation associated with the position,
so the number of operations is O(log(n)).

Algorithm 5 Search value

Require: left - the index of the search interval’s left limit
right - the index of the search interval’s right limit
value - the value to be searched
a - the array with frequency
1: function SEARCH(left,right,value,a)
2 compute span > span = 2¥ where k is the least number such that 2% > right
3 index «— left + 1
4: while (span > 0) do
5: if ((index + span > right) A (getSum(index + span, a) < value)) then
6: index — index + span
7 end if
8 span < span/2
9: end while
10: if (getSum(index,a) < value) then
11: index — index + 1
12: end if
13: return index
14: end function

Finding a cumulative frequency The Search algorithm (algorithm 5) is a
modified version of binary search method. The function is searching for least
element whose cumulative frequency is equal with Value. The prerequisites of
this function is related to the absence of negative values (thus the cumulative

64 M. Cosulschi et al.

frequencies are increasingly ordered) and the value for which the search is
performed is present in the sequence (the search operation does not end with
a failure).

Algorithm 6 (n, m)-Josephus permutation variant 3

Require: n - the number of initial elements
k - the index of the first element removed
p - the step
Ensure: perm - the array with the extracted elements and their order
1: procedure EXTRACTBIT(n, k, p; perm)
2: for i < 1,n do
3 call SetValue(n,i, 1,b)
4: end for
5: count < 1
6: PeETMcount <— k
7 count «— count + 1
8 call SetValue(n,k,—1,b)
9: while (count < n) do
10: sumK «— GetSum(k,b)

11: sumN < GetSum(n,b)

12: steps «— p mod sumN

13: if (steps > 0) then

14: if (steps > (sumN — sumK)) then

15: left « k,right « n, steps < steps + sumK
16: else

17: left < 0,right < n, steps < steps — (sumN — sumK)
18: end if

19: else

20: steps «+— sumK

21: if (steps > 0) then

22: left « 0,right < n

23: else

24: left « k,right < n, steps < sumN

25: end if

26: end if

27: k < search(left,right, steps,b, span)

28: PETMecount < K

29: count <— count + 1

30: call SetValue(n, k, —1,b)

31: end while
32: end procedure

Algorithm details The procedure EztractBIT (algorithm 6) is using a binary
indexed tree for storing and retrieving the information related with adding/re-
moving the elements from the set. As the reader noticed in the previous variants

Ussing ADS for Large (n, m) Permutations 65

of this algorithm, it starts with the initialization step (lines 2-4). Here each el-
ement existing in the set is marked by adding value 1 to the table. In the line
6 is stated the step when current element k is removed from the set, while at
the next line 8 the removal from binary indexed tree is realized.

Lines 13-26 set the limits where the search of the next element shall be
performed. The complexity of this operation is O(log(n)), thus the time com-
plexity of the algorithm being O(n - log(n)). Its performances are better that
the performances of algorithm 1 and 2 when n > m.

4 Conclusions

In this paper we have presented an efficient O(n log(n)) algorithm for solving
the Josephus problem. Another approach presented in Cormen et al [3] suggests
to use the interval tree (augmented red-black tree) as a support data structure
for determining the (n, m)-Josephus permutation. Our work differs from [2] and
above mentioned one, by the usage of another data structure, binary indezed
tree, which is more easy to be implemented, occupies less memory space and
has the same efficiency.

References

1. R. Alasdair, Mac Fhraing (R. A. Rankin), The numbering of Fionn’s and
Dubhan’s men, and the story of Josephus and the forty Jews, Proc. Royal Irish
Academy, Sect. A:52, 1948.

2. M. Augenstein, A. Tenenbaum, Program efficiency and data structures, Pro-
ceedings of the eighth SIGCSE technical symposium on Computer science educa-
tion, 1977.

3. T. H. Cormen, C. E. Leiserson, R. R. Rivest, C. Stein, Introduction to
Algorithms, Second Edition, McGraw-Hill Higher Education, 2002.

4. P. M. Fenwick, A new data structure for cumulative frequency tables, Software-
Practice and Experience, vol. 24, no. 3, p. 327-336, 1994.

5. F. Gelgi, Time Improvement on Josephus Problem, 2002.

6. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foun-
dation for Computer Science, Second Edition, Reading, Addison-Wesley Mas-
sachusetts, 1994.

7. L. Halbeisen, N. Hungerbuhler, The Josephus problem, J. Thor. Nombres
Bordeaux, vol 9, 1997.

8. P. B. Henderson,The Josephus Flavius’ problem, ACM SIGCSE Bulletin, vol
38, Issue 2, 2006.

9. I. N. Herstein, I. Kaplansky, Matters mathematical, Second Edition, Chelsea
Publishing Company, 246pp, 1978.

10. F. Jakébczyk, On the generalized Josephus problem. Glasgow Math. J., 14,
1973.

11. D. E. Knuth, The Art of Computer Programming, vol 1: Fundamental Algo-
rithms, Third Edition, Reading, Addison-Wesley, 1997.

66 M. Cosulschi et al.

12. D. E. Knuth, The Art of Computer Programming, vol 3: Sorting and Searching,
Second Edition, Reading, Addison-Wesley, 1998.

13. A. M. Lloyd, An O(n log m) algorithm for the Josephus problem, Journal of
Algorithms, vol 4, no 3, 1983.

14. A. M. Odlyzko, H. S. Wilf, Functional Iteration and the Josephus Problem.,
Glasgow Math. J, 22, 1991.

15. S. Skiena, Josephus’ Problem., #1.4.3 in Implementing Discrete Mathemat-
ics: Combinatorics and Graph Theory with Mathematica, Reading, MA: Addison-
Wesley, vol 4, no 3, 1990.

16. D. Woodhouse, Programming the Josephus problem, ACM SIGCSE Bulletin,
vol 10, Issue 4, 1978.

