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Abstract. Health care facilities operate administrative information
systems which contain the admission and discharge dates of patient
spells, used to obtain the length of stay (LOS) a patient has stayed in
the health care facility. Understanding the different groups of patients
with regards to their LOS and predicting LOS at admission would assist
in making more informed and timely decisions on managing patients’
care. In this paper we introduce a classification approach to distribute
data, i.e. patient spells, into LOS classes (categories) of similar type.
Keywords: length of stay (LOS), classification, Gaussian mixture
model
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1 Introduction

Health care facilities operate administrative information systems to collect
information on patient activity. Amongst other variables, the admission and
discharge dates of patient spells are commonly recorded, and can be used to
obtain the length of time a patient has stayed in the health care facility, referred
to here as patient length of stay (LOS). LOS is often used as a proxy measure
of a patient’s resource consumption due to the practical difficulties of directly
measuring resource consumption and the easiness of calculating LOS (Marshall
A.H et al., 2005). Understanding the different groups of patients with regards to
their LOS and predicting LOS at admission would assist hospital management
and health professionals in making more informed and timely decisions on
managing patients’ care and planning for their discharge, and on allocating
hospital resources (Marshall A.H et al., 2001).

In this paper we introduce a classification approach to distribute data, i.e.
patient spells, into LOS classes (categories) of similar type. Classification is
an approach often used to enhance understanding and allows predictions to be
made in the presence of large volumes of historical data (Harper P.R, 2005).
Based on previous studies in which this methodology has been applied (Abbi
R et al., 2008, Abbi R et al., 2007b), we found that the classification model is
often heavily influenced by the shorter stay classes. In such cases, the longer stay
patient classes exhibit very low prediction accuracies. As such, we introduce a
further processing step whereby a sensitivity analysis is performed to refine the
LOS classes in order to increase the prediction accuracy of the derived classifier.
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2 Methods

Based on random sampling (Cochran W, 1977), input data are split into two
subsets of data. T'wo thirds of the data are used for training, and one third for
testing. The GMM fitted to the LLOS training data is a probability density model
comprising of m Gaussian functions (Titterington D.M et al., 1985, McLachlan
G.J and Peel D, 2000). Each Gaussian (component) j is described using three
parameters, mean , variance and mixing coefficient . We limit the number of
components of the GMM to eight, to avoid overfitting and to take account
of human comprehension considerations (Miller G.A, 1956). The parameters
of the model are estimated from the training data using the EM algorithm
(Dempster A.P et al., 1977), implemented on the MATLAB technical software
platform (Nabney I.T, 2004).

In order to find the optimum number of components we employ the Mini-
mum Description Length (MDL) criterion (Rissanen J, 1978). Although MDL
has shown to be effective for model selection (Walter M et al., 2001), it is also
known for over-estimating the number of components (Walter M, 2002). As
such, we assess the contribution of additional components based on the per-
centage decrease of the MDL value. The MDL criterion has also been validated
against other commonly used criteria (Abbi R et al., 2007a), such as the Akaike
information criterion (Akaike H, 1973) and the Bayesian information criterion
(Schwarz G, 1978), and was found to suggest the same number of components.

To further aid the selection of an appropriate GMM, ten random samples of
synthetic data are generated based on the parameters of each GMM. The 10",
25th 50t 75t 95th g9th 99 5t and 100" percentile values for all samples
are averaged, and used to make comparisons, measuring how well each GMM
fits the LOS data.

Based on the selected GMM, we define the LLOS classification scheme as a
set of consecutive mutually exclusive LOS intervals defined according to the
highest posterior probability p(j—z) of a LOS observation ”belonging” to a
component of the GMM, Equation 1. The posterior probability is derived using
the Bayes rule, incorporating the conditional probability p(z—;j), Equation 2,
prior probability P(j), and the unconditional probability p(z), Equation 3. The
prior probability P(j) is obtained from the mixing coefficient wj;, representing
the prior knowledge of the proportion of group j to the overall population.
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Once LOS classes are defined, a decision tree is built from the training
data using the C4.5 algorithm, programmed in the C programming environ-
ment (Quinlan J.R, 1993). In this case, the C4.5 algorithm attempts to find
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a mapping between the patient records and the classes of the classification
scheme.

Decision trees have shown to be particularly robust in healthcare appli-
cations compared with neural networks, regression models, and discriminate
analysis (Harper P.R, 2005). They are computationally efficient and are natu-
rally capable of handling datasets consisting of mixed data types (i.e. numerical
and categorical variables). This is of particular value for the healthcare domain
as health administrative information systems commonly exhibit both numer-
ical (e.g. age) and categorical variables (e.g. diagnosis). In addition to their
efficiency and ability to handle a mixture of different data types, decision trees
are easily interpretable by humans and provide a clear indication of which vari-
ables are of most importance. The models can be easily converted into a set
of logical rules which further aid their interpretability. The interpretable na-
ture of decision trees enables the health professional to understand prospective
predictions, i.e. take into account the variables and specific characteristics that
form the basis of the predictions made. As such, justifications may be made,
as the rationale of the prediction is known, thus enabling the health profes-
sional to approve or disapprove the prediction. A black-box approach like the
neural network model would make it difficult to derive such justifications and
thus confidence in the model would be at stake. Moreover, the average error
rates of decision tree algorithms, statistical and neural network approaches are
very similar (2000). In fact, amongst the various decision tree algorithms eval-
uated the C4.5 and CART algorithms tend to perform quite well. In addition,
although neural networks perform slightly better in terms of prediction, the
explanation capability that exists for decision trees is an important advantage
(Perner P et al., 2001).

We evaluated the performance of the algorithm by using the overall and
class accuracy, calculated as a percentage of correctly classified patient spells
(Equation 4) and correctly classified spells for a given class j (Equation 5)
respectively. In this case, S is the total number of correctly classified spells,
and S; is the total number of correctly classified spells for class j.

Owerall Accuracy = £ -100 (4)
Overall Accuracy; = 52100 (5)

J

Sensitivity analysis

We further evaluate the tree using the testing data and by generating a
confusion matrix (Han J and Kamber M, 2006). The confusion matrix is a
common way to evaluate a classifier’s ability to discern between spells belonging
to different LOS classes within the classification scheme and is based on the
various predictions made by the decision tree on the testing data.

A confusion matrix is an m by m matrix that contains information about
the actual LOS class as well as the predicted LOS class of patient spells, where
m is the number of classes within the derived classification scheme. Column
j of the matrix represents the spells predicted as belonging to LOS class j,
while row j represents the spells that actually belong to LOS class j. Correctly
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predicted spells are therefore found in the diagonal of the matrix, i.e. ¢(j,j)
within the matrix represents the correctly classified spells for LOS class j. If a
patient spell belonging to class j is incorrectly classified as belonging to class
j+1, then the matrix ¢(j,j+1) would be incremented by one, thus indicating
that a spell belonging to class j was incorrectly classified to class j+1.

To improve the prediction accuracy of the classification model, we use the
confusion matrix to provide insight of the influence that the classes within the
classification scheme. For instance, for a given class j, the highest number within
the confusion matrix in row j should be ¢(j5,5). If ¢(j,j) is not the highest, we
then find the ¢(j,h) which consists of the highest number, amongst c(j,¢), where
q = 1,..., m, and ¢ # j. In predicting LOS, due to the skewed distribution, it
is likely that class h, is a short stay class, influencing the classifier because
the majority of patients stay short periods of time. This issue was previously
referred to as the unbalanced class problem.

The objective is to refine the LOS classification scheme and to improve the
ability of differentiating between patients belonging to different LOS classes.
The procedure for conducting the sensitivity analysis and refinement of the
classification model is as follows. Given a m*m confusion matrix, the objective
is to maximise the c¢(j,j), i.e. the number of correctly predicted spells for class

For notational purposes, the interval range for class 7 within a given classifi-
cation scheme is denoted as jypn and jmaq- For each class 7, if ¢(4,7) within the
confusion matrix is lower than ¢(j,¢), then we find the ¢(3,h) which consists of
the highest number amongst cells g¢. We then decrease the LOS interval range
for class h by one day, whilst increasing the range for the adjacent class by one
day. More formally, if ¢(j,7) < ¢(J,¢), then we find ¢(j,h). Moreover, if h > j,
then we reduce h,i, by one day, and increase h — 1,4, by one day. However,
if jzh, then we reduce hq, by one day and increase h + 1,,;,. In this case, h-1
or h+1 maybe equal to j.

Moreover, if any class j within the classification scheme consists of a very
small percentage of spells, such that the prediction accuracy is very low, then
we merge it with the adjacent class i.e. j-1.

Dataset

The data used is a surgical administrative discharge dataset. It consists of
7,723 records detailing the spells of patients undergoing some form of surgery in
a tertiary hospital in Adelaide, Australia, discharged between 1% July 1997 and
30" June 1998. The variables describing each patient spell include the dates of
hospital admission and discharge, the LOS in days, the gender of the patient,
whether the patient was treated in a public or private hospital, whether the pa-
tient was admitted as an emergency case, and finally the diagnosis information
- coded using major diagnostic categories (MDC). The MDC coding system
consists of 25 categories, each of which corresponds to a single organ system.
Each MDC for a patient is determined by the primary disease or condition for
which a patient is hospitalised or treated.
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3 Results

Before the proposed methodology is applied, all LOS observations are in-
cremented by one, ensuring that the workload during the day is considered
within the model (Millard P.H, 1994). As such, short stay patients who do not
stay overnight are considered as staying for one day instead of zero days, thus
ensuring that their workload is also taken into consideration.

The Surgical dataset is split into two subsets, where the training subset
consists of 5148 randomly extracted spells and the testing subset is made up of
the remaining 2575 spells. To ensure that the results are statistically robust, we
perform the analysis on ten randomly extracted training and testing datasets.

Fitting GMM to LOS data
Once the data was split, various GMMs with components ranging between two
and six were fitted to the Surgical LOS training data and the parameters were
estimated using the EM algorithm. As the number of components of the GMM
were increased, the diversity of the patient population was better reflected,
Table 1. In addition, as the number of components was increased, the mean
and variance of the last component also increased substantially.

When fitting the GMM’s, components with a higher mean LOS contained
only a small proportion of patient records, as shown by the mixing coefficient,
e.g. 1.9% and 0.3% for the last component of the model with five components
and six components, respectively. The six-component GMM seems to be over-
fitting the LOS data, this can be seen by observing that the sixth component
represents less than one percent of patient spells.

Table 1. Estimated parameters for the GMMs fitted to the Surgical dataset
by using the EM algorithm.

No of Mean (days), standard deviation (days),
Components mixing coefficient (%), per component
15t 2nd 3rd 4th 5th 6th
3.8, 16.9,
P 2.1, 14.8,
76.723.4
2.3, 6.4, 22.3,
3 0.5, 3.1, 18.1,
39.248.7 12
2.2, 5.4, 134,392,
4 0.5, 2.2, 6.0, 26.0,
38.3394 18.8 3.5
2.2, 4.4, 8.6, 188,491,
5 0.5, 1.5, 3.1, 7.5, 30.2,
374279 228 99 1.9
2.2, 4.20,8.0, 16.6,37.5, 95.5,
6 0.5, 1.4, 2.7, 6.4, 15.4,51.4,
37 259 23 11.1 2.7 0.3
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Model selection

Using the MDL criterion, the overall description length was computed for each
of the five GMMs. The value of the MDL criterion for each GMM shows that
as the number of components is increased, a better representation of the LOS
of patients is achieved. The MDL criterion suggests the four component model
is optimal. In addition, based on the percentile analysis, the four-component
GMMs provides a reasonable approximation of the LOS observations. This
reaffirms that the four component model is representative of the LOS of surgi-
cal patients using the minimum number of components. Moreover, if we only
consider percentile values up to 99.5, the x? goodness-of-fit test shows no sig-
nificant difference between the four-component GMM and the actual Surgical
LOS data. As such we selected the GMM with four components.

Interpretation of model parameters
The four component GMM approximates the LOS distribution and suggests
that there are four dominant patterns for the duration of stay of surgical pa-
tients, (the fourth group cannot be seen because of the small probability associ-
ated with it). The first group consists of approximately 38.3% of patients, with
a mean LOS of 2.2 days. The second group consists of approximately 39.4% of
patients, with a mean LOS 5.4 days whilst the third group consists of 18.8%
of patients with a mean LOS of 13.4 days. Finally, the fourth group consists of
3.5% of patients with a mean LOS of 39.2 days.

The four surgical patient groups can be described as follows:

— The first group describes short stay patients who stay between a few hours
to a couple of days.

The second group describes those patients that are more complex than the
short stay patients, who stay from a few days up to a week.

The third group represents the patients who need more attention, staying
an average of two weeks.

The fourth group represents long stay patients, staying more than a month.

The variability within each component increases as the mean LOS within
each component also increases. In other words, patients who belong in the first
few groups have less variability in their likely LOS compared with longer stay
patients. Based on the variation, it would therefore be easier to determine the
LOS of shorter stay patients and harder to determine the LOS of longer stay
patients. Deriving the LOS classification scheme
Based on the parameters of the four-component GMM, we use Bayes theorem,
to determine the likelihood of a patient who has stayed for x days, belonging
to a particular group. Using the probabilities defined for each LOS x, we assign
LOS observations to the most probable group and derive a four class LOS
classification scheme, namely 1-3 days, 4-9 days, 10-28 days, and 29+ days. The
percentage of patients belonging to each class differs from the groups defined
in the GMM. This is because the probabilistic grouping has been partitioned
into non-overlapping classes.
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The first LOS class within the classification scheme comprises of all patients
staying between one and three days and represents 45.9% of the population. The
second LOS class corresponds to patients staying between four and nine days
and represents 35.1% of the population. The third class corresponds to patients
staying between ten and 28 days representing 16.3% of the population, whilst
the fourth class consists of any patients staying 29 days or more, representing
2.7% of the population.

Once the four-class LLOS classification scheme was derived, it was then used
to supervise the C4.5 algorithm in developing a surgical patient classification
model. The independent variables considered within the model were limited to
those available within the Surgical dataset. These included the patient’s date
of hospital admission, their gender, whether the patient was treated in a public
or private hospital, whether the patient was admitted as an emergency case, as
well as their diagnosis coded using MDC.

Classification prediction accuracy
The overall training accuracy, testing and class accuracy are detailed within
Table 2. Table 2: Overall and class accuracy of decision trees using C4.5 (av-
eraged over ten randomly derived trees, where standard deviation of results are
shown in brackets)

Overall Prediction Accuracy Class Accuracy
Training (%) Testing (%)  1-3 days 4-9 days 10-28 days 29+ days
56.0 52.1 77.4 42.9 6.4 20.4

Sensitivity analysis

In order to improve the prediction accuracy of 52.1% (Table 2), we per-
formed a sensitivity analysis of the LOS classification scheme by modifying the
interval ranges defined within the LOS classification system.

For each of the ten trees derived, we analysed the corresponding confusion
matrices. The analysis indicated that although the confusion matrices differed
for each tree model (depending on the data used to build and test the tree), the
influence of the first two LOS classes was consistently observed. An example
of this is provided in Figure 1, whereby the classifier was clearly influenced by
the first class 1-3 days when predicting spells belonging to the second class 4-9
days. In this case, for patient spells belonging to class 4-9 days, 405 spells were
correctly classified, however 482 spells were incorrectly classified as belonging to
1-3 days. This clearly illustrates the influence of the first class on the classifier,
which could be because 45.9% of spells belonged to this class, as opposed to
the 35.1% of spells belonging to the second class.

In addition, the classifier was also influenced by the first two shorter stay
classes when predicting the third and fourth LOS classes. For instance, the
majority of spells that belonged to class 29+ days were incorrectly classified as
belonging to classes 1-3 days and 4-9 days.
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1-3 | 4-9 |10-28|29+4 | Total number of
days|days| days |days spells
1-3 days | 962 | 221 3 0 1,186
4-9 days | 482 | 405 | 10 0 897
10-28 days| 182 | 211 5 13 411
29+ days | 29 | 33 3 15 80

Figure 1: Classifications predicted for testing data (2,574 spells) for a de-
cision tree built on randomly extracted training data (5,149 spells), where the
overall accuracy is 53.8% and class accuracy is 81.1%, 45.2%, 1.2%, 18.8%.

In order to remove the influence of the first and second class, as well as
to increase the prediction accuracy for the longer stay spells, we merged the
third and fourth L.OS classes to form a three class LLOS classification scheme.
This step was performed to increase the number of spells within the longer stay
class.

The three class scheme is defined as 1-3 days, 4-9 days, and 10+ days, where
45.9% of spells belonged to the first class, 35.1% to the second class, and 19.0%
to the third class. Although this increased the average overall accuracy from
52.1% to 52.5% (standard deviation of 0.6), the class accuracy for the longer
stay class remained very low. The class accuracy was 77.7% for 1-3 days, 40.4%
for the 4-9 days, and 14.1% for the 10+ days class. The low accuracy for the
long stay class was caused by the classifier still being influenced by the first two
shorter stay classes, see confusion matrix for the three class scheme, Figure 2.
As such, we also performed a sensitivity analysis to modify the intervals of the
classification scheme in order to increase the class accuracy.

1-3 days| 4-9 \10—{— days|Total number of spells
1-3 days 996 |days 16 1,199
4-9 days 510 221 37 905
104 days| 190 405 51 470

Figure 2: Classifications predicted for testing data (2,574 spells) for a de-
cision tree built on randomly extracted training data (5,149 spells), where the
overall accuracy is 54.6% and class accuracy is 83.1%, 39.6%, 10.9%.

Performing the sensitivity analysis resulted in a LOS classification scheme
of 1-2 days, 3-6 days, and 7+ days. However, the ensuing overall accuracy of the
new classification scheme had decreased to 49.4% (with a standard deviation of
0.8), with a class accuracy of 48.0%, 53.9%, and 45.2%. An exemplar confusion
matrix of a decision tree classifier, based on the updated classification scheme
after the sensitivity analysis is shown in Figure 3. In terms of the overall accu-
racy, the performance decreased as the class accuracy for the short stay class
was also reduced.

1-2 days|3-6 days|74+ days|Total number of spells
1-2 days| 370 262 148 1,199
3-6 days| 206 496 300 905
7+ days| 102 255 436 470
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Figure 3: Classifications predicted for testing data (2,574 spells) for a de-
cision tree built on randomly extracted training data (5,149 spells), where the
overall accuracy is 50.6%, and class accuracy is 47.4%, 49.5%, 55.1%.

4 Discussion

In this paper we illustrated how the classification model for predicting pa-
tient LOS maybe refined in order to increase the prediction accuracy for the
longer stay spells. Although the prediction accuracy was increased, the accu-
racy for the shorter stay classes decreased.

The methodology is inevitably limited by the quality and quantity of the
data available, and as such we emphasise that the decision tree algorithm can
only capture the patterns that are present within the data (Mingers J, 1989b).
With deterministic data, each example within the training data can always be
correctly classified from the set of independent variables (Mingers J, 1989a).
However, in many real world problems where there is a degree of uncertainty
present in the data, it makes it very difficult in making accurate predictions.
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