A Spatial Reasoning HDR System

Mihaela GHINDEANU

Faculty of Mathematics and Computer Science, Department of Computer Science, University of Craiova, Romania mghindeanu@yahoo.com

Abstract. In this article is presented how HDR systems can be used for spatial reasonings. Because the reasoning entities of the HDR systems are defined based on the inferences they have to perform it is very easy to implement in these systems distributed reasoning processes. For this reason we reconsider our approach presented in [1] for image synthesis reasoning mechanism because this is a distributed reasoning mechanism differentiated along the main axes of a spatial image. Keywords: distributed spatial reasoning system, semantic schema AMS Subject Classification 2000: 68T30; 68T45; 68T50

Prerequisites

A θ -semantic schema (shortly, θ -schema) is a system $S = (X, A_0, A, R)$,

- X is a finite non-empty set of symbols named **object symbols**
- A_0 is a finite non-empty set of elements named label symbols and $A_0 \subseteq$ $A \subseteq \overline{A}_0$, where \overline{A}_0 is the Peano θ -algebra generated by A_0
- $R \subseteq X \times A \times X$ is a non-empty set of **relations**.

Let us consider a θ -schema $S = (X, A_0, A, R)$. We denote by Ded(S) the least set satisfying the following properties:([2])

- If $(x, a, y) \in R_0$ then $([x, y], a) \in Ded(S)$
- If $([x_i, \ldots, x_k], u) \in Ded(\mathcal{S})$ and $([x_k, \ldots, x_r], v) \in Ded(\mathcal{S})$, i < k < r and $\theta(u, v) \in A$ then $([x_i, \ldots, x_r], \theta(u, v)) \in Ded(\mathcal{S})$. An element of $Ded(\mathcal{S})$ is an deductive path of S.

Consider $d_1 = ([x_1, \ldots, x_k], u) \in Ded(\mathcal{S})$ and $d_2 = ([y_1, \ldots, y_m], v) \in$ $Ded(\mathcal{S}).$ We write $d_1 \prec d_2$ if k < m and either one of the following condition is satisfied:([2])

- $x_1 = y_1, \dots, x_k = y_k, v = \theta(u, u_1)$ $x_1 = y_{m-k+1}, \dots, x_k = y_m, v = \theta(v_1, u)$

Definition 1. ([2]) An element $d \in Ded(S)$ is a maximal element if there is not $\beta \in Ded(S)$ such that: $d \prec \beta$. We denote by $Ded(S)^{max}$ the set of all maximal elements of Ded(S).

The maximal elements of Ded(S) are named also the maximal paths of the schema S or the **conclusions** obtained in this reasoning environment.

Let us consider the schemas $S_1 = (X_1, A_{01}, A_1, R_1)$ and $S_2 = (X_2, A_{02}, A_2, R_2)$ and $i \in \{1, 2\}$.

If $d_1 = ([x, \ldots, y], u) \in Ded(S_i)$ and $d_2 = ([y, \ldots, z], v) \in Ded(S_{3-i})$ then we say that d_1 is **connected to right** by d_2 or d_2 is **connected to left** by d_1 . We say that d_1 is **connected** by d_2 if d_1 is connected to right or to left by d_2 .

We consider the following sets of deductive paths $L_1 \subseteq Ded(S_1)$ and $L_2 \subseteq$ $Ded(S_2)$. We say that $L_1 \cup L_2$ is a pairwise connected set of deductive paths if every deductive path of L_i is connected by some deductive path of L_{3-i} .

Using $L_1 \cup L_2$ we can build a new structure over S_1 and S_2 , named hyperschema of first order.

In the resulted hyper-schema each element of L_i , $i \in \{1, 2\}$, is transformed into a **regular arc** by means of a bijective mapping g_{S_i} . More exactly, for $g_{S_i}(e) = \theta(u, v)$, if $d = ([x, \dots, y], \theta(u, v)) \in L_i$ then the regular arc (x, e, y) is considered in the hyper-schema.

Definition 2. ([3]) A hyper-schema of order one over S_1 and S_2 obtained by means of L_1 and L_2 is a θ -schema S that includes the regular arcs obtained from L_1 and L_2 . We denote by $Hyp_1(\{\mathcal{S}_1,\mathcal{S}_2\})$ the set of all hyper-schemas of first order over S_1 and S_2 .

In general we write $S \in Hyp_k(\{S_1, S_2\})$ if S_1 and S_2 are hyper-schemas of order $j \leq k-1$ and at least one of them has the order k-1.

Definition 3. ([3]) An HDR system is the tuple $H = (Q_1, Q_2, \dots, Q_k)$ where $k \geq 2$ and

- $Q_1 = \{Ag_1, \ldots, Ag_{n_1}\}_{n_1>1}$, constitutes the first level of the system. The entities $\{Ag_1, \ldots, Ag_{n_1}\}$ are named the **agents** of the system and as structures they are θ -schemas.
- We note the schemas generated by the agents of the system with S_1, \ldots, S_{n_1} .
- $Q_2 = \{KM_{n_1+1}, \dots, KM_{n_2}\}_{n_2 \geq n_1+1}$, constitutes the set of the knowledge managers of the second level of the system and as structures they are hyperschemas of order 1.

Thus, if we note with $\mathcal{S}_{n_1+1},\ldots,\mathcal{S}_{n_2}$ the schemas generated by the managers of Q_2 we have that $\forall m \in \{n_1 + 1, \dots, n_2\}, \exists m_1, m_2 \in \{1, \dots, n_1\}, m_1 \neq m_2$

$$\mathcal{S}_m \in Hup_1(\{\mathcal{S}_{m_1}, \mathcal{S}_{m_2}\})$$

 $\mathcal{S}_m \in Hyp_1(\{\mathcal{S}_{m_1}, \mathcal{S}_{m_2}\})$ • $Q_j = \{KM_{n_{j-1}+1}, \dots, KM_{n_j}\}_{j \geq 3}$ represents the set of the knowledge managers for the j-th level of the system. Thus, if we note by $S_{n_{j-1}+1}, \ldots, S_{n_j}$ the hyper-schemas generated by the managers of Q_j we have that $\forall m \in$ $\{n_{j-1}+1,\ldots,n_j\}, \exists m_1 \in \{n_{j-2},\ldots,n_{j-1}\} \text{ and } \exists m_2 \in \{1,\ldots,n_{j-1}\},\$ $m_1 \neq m_2$ such that:

$$S_m \in Hyp_{i-1}(\{S_{m_1}, S_{m_2}\})$$

2 A spatial reasoning HDR system

In order to implement the reasoning mechanism of [1] in a HDR system, the architecture of the system is defined as follows. At the first level there are the agents which start the inputs' processing, each agent being specialized on a single axis' relations. At the upper levels the knowledge managers' tasks consist of enriching the deductions already obtained in the system by combining deductions from different entities, that is, deductions corresponding to different axes of the image. In this manner, the reasonings entities of this system determine an inference mechanism based entirely on deductions.

In what follows we consider spatial images with two dimensions. We define an HDR system consisting of two agents at the first level and a single manager at the second level whose task is to combine the agents' deductions in order to illustrate them in a 2D picture.

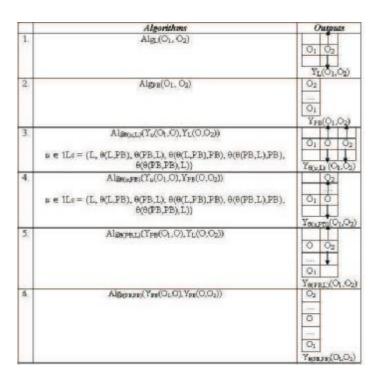
In order to describe arrangements of 2D objects in a 2D spatial area, each knowledge piece received by the system will contain instances of the following four directional relations: at left side of, behind, perfectly at left side of, perfectly behind correspond to the Ox axis and behind, perfectly at left side of correspond to the Oy axis of the described 2D image.

Definition 4. We define the knowledge domain of HDR system as the set of the spatial relations existing along the two axes of a 2-dimensional image. It consists of:

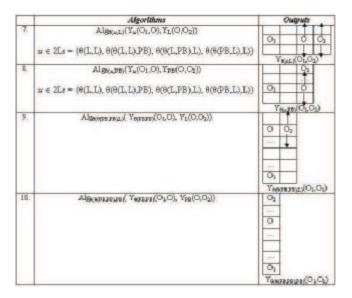
- the initial relations: (perfectly) at left side, (perfectly) behind
- relations that can be derived using composition from the system's initial relations.

These relations are externally represented by the graphical illustrations of their corresponding spatial semantics.

Definition 5. We define the architecture of HDR system as follows:


$$H = (\{Ag_1, Ag_2\}, \{KM_3\})$$

such that $S_i = (X_i, A_{0i}, A_i, R_i)$, $i = \overline{1,3}$, $A_{01} = \{L, PB\}$, $A_{02} = \{B, PL\}$. The labels of A_{01} and A_{02} correspond to the system's initial relations at Left side of, Behind, Perfectly at Left side of, Perfectly Behind.


As we have said, the relations of the system's domain are externally represented by graphical images. More precisely, they are represented by means of some grids that illustrate the spatial relations of some objects.

Definition 6. Let us consider the HDR system $H = (\{Ag_1, Ag_2\}, \{KM_3\})$ with $S_i = (X_i, A_{0i}, A_i, R_i), i = \overline{1,3}$.

We will note by $Y_u(O_1, O_2)$ the graphical illustration of the spatial relation internally labeled by u that exists between the objects O_1 and O_2 , that is:

Fig. 1. The external representations corresponding to Ag_1 labels (I).

Fig. 2. The external representations corresponding to Ag_1 labels (II).

$$Y_{u}(O_{1},O_{2}) = Alg_{u}^{S_{i}}(O_{1},O_{2}), u \in A_{0i}$$

$$Y_{\theta(u_{1},u_{2})}(O_{1},O_{2}) = Alg_{\theta(u_{1},u_{2})}^{S_{i}}(Y_{u_{1}}(O_{1},O),Y_{u_{2}}(O,O_{2})), u = \theta(u_{1},u_{2}) \in A_{i}$$
with $i \in \{1,\ldots,3\}$.

Definition 7. Let us consider the HDR system $H = (\{Ag_1, Ag_2\}, \{KM_3\})$ with $S_i = (X_i, A_{0i}, A_i, R_i), i = \overline{1,3}$.

We say that two labels $u, v \in A_1 \cup A_2 \cup A_3$ are semantically equivalent if and only if their external representations $Y_u(O_1, O_2)$ and $Y_v(O_1, O_2)$ are identically, $\forall O_1, O_2 \in Ob$.

Proposition 1. Let us consider the HDR system $H = (\{Ag_1, Ag_2\}, \{KM_3\})$, with $S_i = (X_i, A_{0i}, A_i, R_i)$, $i = \overline{1, 3}$.

If $\exists u, v \in A_k$, $u \neq v$ such that trace(u) = trace(v), $k \in \{1, ..., 3\}$ then the labels u and v are considered semantically equivalent.

Proof. Let us suppose that $trace(u) = \langle u_1, \ldots, u_n \rangle_{n \geq 1}$, $trace(v) = \langle v_1, \ldots, v_m \rangle_{m \geq 1}$. From trace(u) = trace(v) we obtain n = m and $\forall i = \overline{1, n}$: $u_i = v_i$.

If $n \leq 2$ results that u = v. For n = 3 we will consider $trace(u) = trace(v) = \langle w_1, w_2, w_3 \rangle, \ w_1, w_2, w_3 \in A_0$. Because $u \neq v$ we can have the following cases:

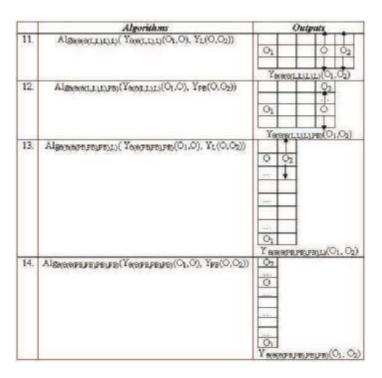


Fig. 3. The external representations corresponding to Ag_1 labels (III).

```
-u = \theta(\theta(w_1, w_2), w_3) and v = \theta(w_1, \theta(w_2, w_3)) or -u = \theta(w_1, \theta(w_2, w_3)) and v = \theta(\theta(w_1, w_2), w_3)
```

Without losing generality, let us suppose that $u = \theta(\theta(w_1, w_2), w_3)$, $v = \theta(w_1, \theta(w_2, w_3))$. Results that both images Y_u and Y_v are made based on the same kind of images Y_{w_1} , Y_{w_2} and Y_{w_3} . Only the order in which these images are combined is different.

Indeed, $\forall O_1, O_2, O_3, O_4 \in Ob$ let us consider $Y_{w_1}(O_1, O_2), Y_{w_2}(O_2, O_3), Y_{w_3}(O_3, O_4)$. Results that $\exists i, j \in \{1, \dots, 3\}$ such that:

- $Y_{\theta(w_1,w_2)}(O_1,O_3) = Alg_{\theta(w_1,w_2)}^{S_i}(Y_{w_1}(O_1,O_2),Y_{w_2}(O_2,O_3))$ for $\theta(w_1,w_2) \in A_i$ and thus $Y_{\theta(w_1,w_2)}(O_1,O_3)$ is the graphical illustration of the relations labeled by w_1 and w_2 between O_1 and O_2 and, respectively, between O_2 and O_3
- $Y_{\theta(w_2,w_3)}(O_2,O_4) = Alg_{\theta(w_2,w_3)}^{S_j}(Y_{w_2}(O_2,O_3),Y_{w_3}(O_3,O_4))$ for $\theta(w_1,w_2) \in A_j$ and thus $Y_{\theta(w_2,w_3)}(O_2,O_4)$ is the graphical illustration of the relations labeled by w_2 and w_3 between O_2 and O_3 and, respectively, between O_3 and O_4

Results that both images $Y_u(O_1, O_4)$ and $Y_v(O_1, O_4)$ illustrates the same relations between the same pairs of objects, which implies their equivalence:

```
 \begin{split} &-Y_{\theta(\theta(w_1,w_2),w_3)}(O_1,O_4) = Alg_{\theta(\theta(w_1,w_2),w_3)}^{\mathcal{S}_k}(Y_{\theta(w_1,w_2)}(O_1,O_3),Y_{w_3}(O_3,O_4)) \\ &-Y_{\theta(w_1,\theta(w_2,w_3))}(O_1,O_4) = Alg_{\theta(w_1,\theta(w_2,w_3))}^{\mathcal{S}_k}(Y_{w_1}(O_1,O_2),Y_{\theta(w_2,w_3)}(O_2,O_4)) \end{split}
```

In what follows we consider that the knowledge pieces received by the system are descriptions of 2D images consisting of maximum 5 objects. This implies that the labels' lengths of the agents' relations are smaller than 5.

Definition 8. Let us consider the HDR system $H = (\{Ag_1, Ag_2\}, \{KM_3\}), S_i = (X_i, A_{0i}, A_i, R_i), i = \overline{1, 3}, A_{01} = \{L, PB\}, A_{02} = \{B, PL\}.$

The specialization of the system's agents is defined as follows:

• Ag₁'s specialization consists of relations that describe relative positions along the Ox axis, that is, the left side of and perfectly behind relations and all of the relations that can be derived from these ones using composition, that is:

```
\begin{array}{l} \bigcup_{n=0}^{3}(A_{1})_{n} \; such \; that: \\ (A_{1})_{0} = A_{01} = \{L, PB\} \\ (A_{1})_{n} = \bigcup_{u \in (A_{1})_{n-1}} \{\theta(u, L), \theta(u, PB)\}_{n \geq 1} \\ Results: \\ (A_{1})_{0} = \{L, PB\} \\ (A_{1})_{1} = \{\theta(L, PB), \theta(PB, L), \theta(PB, PB), \theta(L, L)\} \\ (A_{1})_{2} = \{\theta(\theta(L, PB), L), \theta(\theta(L, PB), PB), \theta(\theta(PB, L), L), \theta(\theta(PB, L), PB), \theta(\theta(PB, PB), PB), \theta(\theta(PB, PB), L), \theta(\theta(L, L), PB), \theta(\theta(L, L), L)\} \\ (A_{1})_{3} = \{\theta(\theta(L, PB), L), L), \theta(\theta(\theta(L, PB), L), PB), \theta(\theta(\theta(L, PB), PB), L), \theta(\theta(\theta(L, PB), PB), PB), \theta(\theta(\theta(PB, L), L), L), \theta(\theta(\theta(PB, L), PB), PB), \theta(\theta(\theta(PB, L), L), L), \theta(\theta(\theta(PB, L), L), L), \theta(\theta(\theta(PB, PB), PB), L), \theta(\theta(\theta(PB, PB), PB), L), \theta(\theta(\theta(L, L), PB), L), \theta(\theta(\theta(L, L), L), PB), \theta(\theta(\theta(L, L), L), L), \theta(\theta(\theta(L, L), L), PB), \theta(\theta(\theta(L, L), L), L), \theta(\theta(\theta(
```

The algorithms corresponding to the labels of $\bigcup_{n=0}^{3} (A_1)_n$ are presented in Figures 1-3.

• Ag₂'s specialization consists of relations that describe relative positions along the Oy axis, that is, the behind and perfectly left relations and all of the relations that can be derived from these ones using composition:

```
\begin{array}{l} \bigcup_{n=0}^{3}(A_{2})_{n} \ such \ that: \\ (A_{2})_{0} = A_{02} = \{B, PL\} \\ (A_{2})_{n} = \bigcup_{u \in (A_{2})_{n-1}} \{\theta(u,B), \theta(u,PL)\}_{n \geq 1} \\ Results: \\ (A_{2})_{0} = \{B, PL\} \\ (A_{2})_{1} = \{\theta(B,PL), \theta(PL,B), \theta(PL,PL), \theta(B,B)\} \\ (A_{2})_{2} = \{\theta(B,PL), B), \ \theta(\theta(B,PL),PL), \ \theta(\theta(PL,B),B), \ \theta(\theta(PL,B),PL), \ \theta(\theta(PL,PL),PL), \ \theta(\theta(PL,PL),PL), \ \theta(\theta(B,B),PL), \ \theta(\theta(B,B),PL), \ \theta(\theta(B,PL),PL), \ \theta(\theta(B,B),PL), \ \theta(B(B,B),PL), \ \theta(B(B,
```

The algorithms corresponding to the labels of $\bigcup_{n=0}^{3} (A_2)_n$ are presented in Figures 4-5.

```
Definition 9. Let us consider the HDR system H = (\{Ag_1, Ag_2\}, \{KM_3\}), S_i = (X_i, A_{0i}, A_i, R_i), i = \overline{1,3}, A_{01} = \{L, PB\}, A_{02} = \{B, PL\}. The specialization of KM_3 is given by the following set:
A_3 = \{\theta(u, v) \mid trace(V(u)) = \langle u_1, ..., u_n \rangle, trace(V(v)) = \langle v_1, ..., v_m \rangle: (u_n = L \land v_1 = PL) \lor (u_n = B \land v_1 = PB) \lor (u_n \in \{PB, PL\})\}
```

The algorithms corresponding to the relations of KM_3 are defined as follows:

- $\begin{array}{l} -\forall \theta(u,v) \in A_3 \colon trace(V(u)) = < u_1, \ldots, u_n >_{n \geq 1}, \ trace(V(v)) = < v_1, \ldots, \\ v_m >_{m \geq 1} \ with \ u_n = L, v_1 = PL \ we \ can \ have \ the \ following \ two \ cases \ for \\ the \ algorithms \ Alg_{V(\theta(u,v))}^{\mathcal{S}_3}(Y_{V(u)}(O_1,O),Y_{V(v)}(O,O_2)): \end{array}$
 - if V(u) = L then $Alg_{V(\theta(u,v))}^{S_3}(Y_L(O_1,O),Y_{V(v)}(O,O_2))$ appending a new column at the left of $Y_{V(v)}(O,O_2)$'s grid such that the object O_1 is in L relation with the common object O_1 of these two grids if $V(u) = \theta(u',L)$ then
 - If $V_{V(\theta(u,v))}^{\mathcal{G}_3}(Alg_{\theta(u',L)}(Y_{u'}(O_1,O'),Y_L(O',O)),Y_V(v)(O,O_2))$ overdraw the image of $Y_{\theta(u',L)}(O_1,O)$ on the image of $Y_{V(v)}(O,O_2)$ such that the object O' of the first image is in L relation with the common object O
- $-\forall \theta(u,v) \in A_3: trace(u) = \langle u_1, \dots, u_n \rangle_{n \geq 1}, trace(v) = \langle v_1, \dots, v_m \rangle_{m \geq 1}$ where $u_n = B, v_1 = PB$ we can have the following two definitions for the algorithms $Alg_{V(\theta(u,v))}^{S_3}(Y_{V(u)}(O_1,O), Y_{V(v)}(O,O_2))$:

	Algorithms	Outputs
L	$Alg_B(O_L, O_2)$	Ye(O ₁ ,O ₂)
2	$Algo_L(O_1, O_2)$	O ₁ O ₂ Y _{PL} (O ₁ ,O ₂)
3.	$\begin{aligned} & \text{Alga}_{B(\mathbf{B},\mathbf{F})}(Y_{\mathbf{u}}(O_1,O),Y_{\mathbf{B}}(O,O_2)) \\ \\ & u \in \text{IB}_{d} = \{\text{B},\theta(\text{B},\text{PL}),\theta(\text{PL},\text{B}),\theta(\theta(\text{B},\text{PL}),\text{PL}), \text{PL}\} \end{aligned}$	← O₂ → ← O → O₁
4.	$\Theta(\Theta(PL, B), PL), \Theta(\Theta(PL, PL), B))$ $Algo_{u, PL}(Y_{u}(O_{1}, O), Y_{PL}(O, O_{2}))$	Y _{0(0,0)} (O ₁ ,O ₂)
	$u \in 1Ba = (B, \theta(B, PL), \theta(PL, B), \theta(\theta(B, PL), PL), \theta(\theta(PL, B), PL), \theta(\theta($	O₁
5.	$Alg_{BPL,B}(Y_{PL}(O_1,O),Y_B(O,O_2))$	O ₁ O Y _{B(PL,B)} (O ₁ ,O ₂)
6.	$Al_{20(PL,PL)}(Y_{PL}(O_1,O),Y_{PL}(O,O_2))$	O1 0 02 Yespta(O1,O2)
7.	$Alg_{B(u,B)}(Y_u(O_1,O),Y_B(O,O_2))$	← O ₂ → ← O →
	$u \in 2Bs = (\theta(B,B), \theta(\theta(B,B),PL), \theta(\theta(B,PL),B), \theta(\theta(PL,B),B))$	Yes, 15(O1,O2)
8.	$\mathrm{Alge}_{(a,\mathrm{PL})}(Y_a(\mathcal{O}_1,\mathcal{O}),Y_B(\mathcal{O},\mathcal{O}_2))$	◆ ○ → O₂
	$\mu \in 2B_0 = (\theta(B,B), \theta(\theta(B,B),PL), \theta(\theta(B,PL),B), \theta(\theta(PL,B),B))$	Ο ₁ Υ _{θ(μ} ρ _Ω (Ο ₁ ,Ο ₂)
9.	$\mathrm{Alga}_{(\Theta,\mathbf{M},\mathbf{PL}),\mathbf{B}}(\ Y_{\Theta(\mathbf{M},\mathbf{PL})}(O_1,O),\ Y_{\mathbf{B}}(O,O_2))$	0t 0

Fig. 4. The external representations corresponding to Ag_2 relations (I).

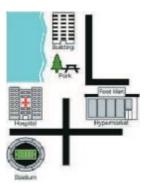

	Algorithms	Outputs
10.	Algerge plants ($Y_{\text{SSPLPLS}}(O_1,O)$, $Y_{\text{PL}}(O,O_2)$)	O ₁ O O ₂
		$Y_{\Theta(\Theta(PL)PL)PL)}(O_1,O_2)$
11	Algebra x_1x_2, x_3, x_4 (Yeers, x_2, x_5) $Y_B(O, O_2)$)	4 ○ 2 4 6 6 7 6 7 8 8 9 9 9 9 9 9 9 9 9 9
		Ο ₁ Υεανοκευεμεν(Ο ₁ , Ο ₂)
12	Algarmora, B_1 , B_2 , U_1 , V_2 , U_3 , U_4 , U_5	4-O-5 O2
		O ₁
	,	Yerereceus, Bupilin (O1, O2)
13.	Algaeapt.pt.pt), B)($Y_{B}(BPL,pt.pt)$)(O_1,O),	O2
	$Y_B(O,O_2))$	01 0
		Y SOCOTE PELPLISH (O1, O2)
14.	Algereratiniplinis(Yelentiplinis(OLO).	01 0 02
	$Y_{PL}(O,O_2))$	Y arayayı, pi, pi, yı, (O ₁ , O ₂)

Fig. 5. The external representations corresponding to Ag_2 relations (II).

- if V(u) = B then $Alg_{V(\theta(u,v))}^{S_3}(Y_B(O_1,O),Y_{V(v)}(O,O_2))$ appending a new line at the bottom of $Y_{V(v)}(O,O_2)$'s grid such that the object O_1 is in B relation with the common object O_1 of these two grids
- if $V(u) = \theta(u', B)$ then $Alg_{V(\theta(u,v))}^{\mathcal{S}_3}(Alg_{\theta(u',B)}(Y_{u'}(O_1,O'),Y_B(O',O)),Y_{V(v)}(O,O_2))$ overdraw the image of $Y_{\theta(u',B)}(O_1,O)$ on the image of $Y_{V(v)}(O,O_2)$ such that the object O' of the first image is in B relation with the common object O
- $-\forall \theta(u,v) \in A_3: trace(u) = \langle u_1, \dots, u_n \rangle_{n\geq 1} \text{ where } u_n \in \{PB,PL\} \text{ we can define the algorithms } Alg_{V(\theta(u,v))}^{\mathcal{S}_3}(Y_{V(u)}(O_1,O),Y_{V(v)}(O,O_2)) \text{ as follows: for } V(u) = \theta(u',PB/PL) \text{ then}$
 - $Alg_{V(\theta(u,v))}(Alg_{\theta(u,PB/PL)}(Y_u(O_1,O'),Y_{PB/PL}(O',O)),Y_{V(v)}(O,O_2))$ overdraw the image of $Y_{\theta(u,PB/PL)}(O_1,O)$ on the image of $Y_{V(v)}(O,O_2)$ such that the object O' of the first image is in PB/PL relation with the common object O

2.1 A study case

Let us consider that the inputs of our system describe spatial relations existing between five landmark shapes of a city. A possible inferable knowledge piece KP for the system corresponding to the image from Figure 6 is the following one:

Fig. 6. A 2D image of landmark shapes

The Stadium is perfectly behind the Hospital. The Hospital is at left side of the Park. The Park is perfectly behind the Building. The Building is at left side of the Hypermarket.

The Stadium is behind the Hospital. The Hospital is perfectly at left side of the Hypermarket. The Hypermarket is behind the Park. The Park is behind the

Results that the set of KP's objects is { Hypermarket, Hospital, Stadium, Building, Park $\} \subseteq Ob$.

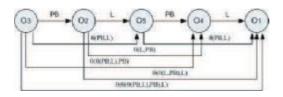


Fig. 7. The semantic schema corresponding to the relations along the Ox axis

If $ob^{-1}(Stadium) = O_3$, $ob^{-1}(Hospital) = O_2$, $ob^{-1}(Park) = O_5$, $ob^{-1}(Building) = O_4$, $ob^{-1}(Hypermarket) = O_1$, then the internal representations of the knowledge derived from KP are the following ones:

- the agent Ag_1 constructs the semantic schema S_1 where $S_1 = (X, A_{01}, A_1, R_1)$ (Figure 7) such that:

 - $\bullet X = \{O_1, \dots, O_5\}$ $\bullet A_{01} = \{L, PB\}$ $\bullet R_1 = \{ (O_3, PB, O_2), (O_2, L, O_5), (O_5, PB, O_4), (O_4, L, O_1), (O_5, PB, O_4), (O_6, L, O_6), (O_6, PB, O_6), (O_6, PB,$

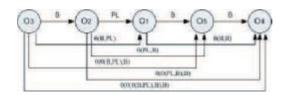


Fig. 8. The semantic schema corresponding to the relations along the Oy axis

```
(O_3, \theta(PB, L), O_5), (O_2, \theta(L, PB), O_4), (O_5, \theta(PB, L), O_1),
   (O_3, \theta(\theta(PB, L), PB), O_4), (O_2, \theta(\theta(L, PB), L), O_1),
   (O_3, \theta(\theta(PB, L), PB), L), O_1)
   • A_1 = pr_2(R_1)
  the agent Ag_2 constructs the semantic schema S_2 where S_2 = (X, A_{02}, A_2, R_2)
   (Figure 8) such that:
   \bullet X = \{O_1, \dots, O_5\}
   \bullet A_{02} = \{B, PL\}
   \bullet R_2 = \{ (O_3, B, O_2), (O_2, PL, O_1), (O_1, B, O_5), (O_5, B, O_4), \}
   (O_3, \theta(B, PL), O_1), (O_2, \theta(PL, B), O_5), (O_1, \theta(B, B), O_4),
   (O_3, \theta(\theta(B, PL), B), O_5), (O_2, \theta(\theta(PL, B), B), O_4),
   (O_3, \theta(\theta(\theta(B, PL), B), B), O_4)
   • A_2 = pr_2(R_2)
- the knowledge manager KM_3 constructs the semantic schema S_3 \in Hyp_1(\{S_1,
   S_2), S_3 = (X, A_{03}, A_3, R_3) obtained by means of some deductive paths
   L_1^{max} \subseteq Ded(\mathcal{S}_1), L_2^{max} \subseteq Ded(\mathcal{S}_2) such that \forall i \in \{1, 2\}:
   L_i^{max} is the set of the maximal deductive paths from Ded(S_i) that can be
   connected with the deductive paths of S_{3-i}. Results:
     • L_1^{max} = \{([O_3, O_2], PB), ([O_2, O_5], L), ([O_5, O_4, O_1], \theta(PB, L)), \}
        ([O_3, O_2, O_5], \theta(PB, L)), ([O_2, O_5, O_4, O_1], \theta(\theta(L, PB), L)),
        ([O_3, O_2, O_5, O_4, O_1], \theta(\theta(\theta(PB, L), PB), L)))
     • L_2^{max} = \{([O_3, O_2], B), ([O_5, O_4], B), ([O_2, O_1, O_5], \theta(PL, B)), \}
        ([O_3, O_2, O_1, O_5], \theta(\theta(B, PL), B)), ([O_1, O_5, O_4], \theta(B, B)),
        ([O_2, O_1, O_5, O_4], \theta(\theta(PL, B), B))
   We will choose the sets L_i, i = \overline{1,2}, as follows:
   L_i = \{ d = ([x, \dots, y], u) \in L_i^{max} \mid \exists d' = ([y, \dots, z], v) \in L_{3-i}^{max}, \\ trace(u) = \langle u_1, \dots, u_n \rangle_{n \ge 1}, trace(v) = \langle v_1, \dots, v_m \rangle_{m \ge 1} :
                    (u_n = L \wedge v_1 = PL) \vee (u_n = B \wedge v_1 = PB) \vee (u_n \in \{PB, P\overline{L}\})\}
   Obviously, we obtain that the set L_1 \cup L_2 is a pairwise connected set of
   deductive paths. For the sets L_1^{max} and L_2^{max} enumerated before we have:
   \bullet L_1 = \{([O_3, O_2], PB), ([O_5, O_4, O_1], \theta(PB, L))\}
   \bullet L_2 = \{([O_2,O_1,O_5],\theta(PL,B)),\, ([O_2,O_1,O_5,O_4],\theta(\theta(PL,B),B))\}.
   \bullet L_1^a = \{(([O_3, O_2], PB), (O_3, e_1, O_2)), (([O_5, O_4, O_1], \theta(PB, L)), (O_5, e_2, O_1))\}
```

```
 \begin{split} \bullet L_2^a &= \big\{ (([O_2,O_1,O_5],\theta(PL,B)),(O_2,m_1,O_5)),\\ &\quad (([O_2,O_1,O_5,O_4],\theta(\theta(PL,B),B)),(O_2,m_2,O_4) \big\} \\ \text{Results that the hyper-schema of } KM_3 \text{ generated by means of } L_1 \text{ and } L_2 \\ \text{is } \mathcal{S}_3 &= (X,\{e_1,e_2,m_1,m_2\},A_3,R_3) \text{ where:} \\ R_3 &= \big\{ (O_3,e_1,O_2),\, (O_5,e_2,O_1),\, (O_2,m_1,O_5),\, (O_2,m_2,O_4),\, (O_3,\theta(e_1,m_2),O_4),\, (O_2,\theta(m_1,e_2),O_1),\, (O_3,\theta(e_1,m_1),O_5),\, (O_3,
```

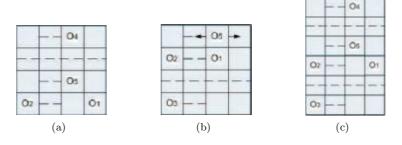
In what follows we will present the way the outputs of the knowledge manager KM_3 are calculated together with their graphical representations.

The initial relations of S_3 , that is the relations of R_{03} are the following four ones:

 $-(O_3, e_1, O_2) \in R_{03}, e_1 \in pr_2(Arc(L_1)).$ Results $\exists d_1 \in Ded(S_1): T(d_1) = (O_3, e_1, O_2), d_1 = ([O_3, O_2], PB).$ Thus $Val_{\mathcal{I}_3}(h([O_3, O_2], e_1)) = Val_{\mathcal{I}_1}(h([O_3, O_2], PB)) = Alg_{PB}^{S_1}(O_3, O_2) = Y_{PB}(O_3, O_2)$

 $\begin{array}{l} -(O_5,e_2,O_1) \in R_{03}, \ e_2 \in pr_2(Arc(L_1)). \ \text{Results} \ \exists d_2 \in Ded(S_1): \ T(d_2) = \\ (O_5,e_2,O_1), \ d_2 = ([O_5,O_4,O_1],\theta(PB,L)). \ \text{We have} \ d_2 \Rightarrow_H^* \sigma_1(h([O_5,O_4],PB),h([O_4,O_1],L)). \ \text{Thus} \ Val_{\mathcal{I}_3}(h([O_5,O_1],e_2)) = Val_{\mathcal{I}_1}(\sigma_1(h([O_5,O_4],PB),h([O_4,O_1],L))) = Alg_{\theta(PB,L)}^{S_1}(Alg_{PB}^{S_1}(O_5,O_4),Alg_L^{S_1}(O_4,O_1)) = \\ Y_{\theta(PB,L)} \ (O_5,O_1) \end{array}$

 $- (O_2, m_1, O_5) \in R_{03}, m_1 \in pr_2(Arc(L_2)). \text{ Results } \exists d_3 \in Ded(\mathcal{S}_2) \colon T(d_3) = (O_2, m_1, O_5), d_3 = ([O_2, O_1, O_5], \theta(PL, B)). \text{ We have } d_3 \Rightarrow_H^* \sigma_2(h([O_2, O_1], PL), h([O_1, O_5], B)). \text{ Thus } Val_{\mathcal{I}_3}(h([O_2, O_5], m_1)) = Val_{\mathcal{I}_2}(\sigma_2(h([O_2, O_1], PL), h([O_1, O_5], B))) = Alg_{\theta(PL, B)}^{\mathcal{S}_2}(Alg_{PL}^{\mathcal{S}_2}(O_2, O_1), Alg_B^{\mathcal{S}_2}(O_1, O_5)) = Y_{\theta(PL, B)}(O_2, O_5)$


$$\begin{split} &-(O_2,m_2,O_4) \in R_{03}, \, m_2 \in pr_2(Arc(L_2)). \text{ Results } \exists d_4 \in Ded(S_2) \colon T(d_4) = \\ &-(O_2,m_2,O_4), \, d_4 = ([O_2,O_1,O_5,O_4],\theta(\theta(PL,B),B)). \text{ We have } d_4 \Rightarrow_H^* \sigma_2(\sigma_2) \\ &-(h([O_2,O_1],PL),h([O_1,O_5],B)),h([O_5,O_4],B)). \text{ Thus } Val_{\mathcal{I}_3}(h([O_2,O_4],m_2)) = Val_{\mathcal{I}_2}(\sigma_2(\sigma_2(h([O_2,O_1],PL),h([O_1,O_5],B)),h([O_5,O_4],B))) = \\ &-Alg_{\theta(\theta(PL,B),B)}^{S_2}(Alg_{\theta(PL,B)}^{S_2}(O_2,O_1),Alg_B^{S_2}(O_1,O_5)),Alg_B^{S_2}(O_5,O_4)) \\ &= Y_{\theta(\theta(PL,B),B)}(O_2,O_4) \end{split}$$

Relations obtained in the hyper-schema S_3 by combining relations of S_1 with relations of S_2 :

 $\begin{array}{l} - \; (O_3,\theta(e_1,m_2),O_4) \in R_3. \; \text{Results} \; \exists d_5 \in Ded(\mathcal{S}_3), \, d_5 = ([O_3,O_2,O_4],\, \theta(e_1,m_2)). \; \text{We have} \; d_5 \Rightarrow_H^* \sigma_3(h([O_3,O_2],e_1),h([O_2,O_4],m_2)). \; \text{Thus} \; Val_{\mathcal{I}_3}(\sigma_3(h([O_3,O_2],e_1),h([O_2,O_4],m_2))) = Alg_{V(\theta(e_1,m_2))}^{\mathcal{S}_3}(Val_{\mathcal{I}_3}(h([O_3,O_2],e_1)), \\ Val_{\mathcal{I}_3} \; (h\; ([O_2,O_4],m_2))) = Alg_{\theta(PB,\theta(\theta(PL,B),B))}^{\mathcal{S}_3}(V_{PB}(O_3,O_2),Y_{\theta(\theta(PL,B),B)}) \\ (O_2,O_4)) = Y_{\theta(PB,\theta(\theta(PL,B),B))}(O_3,O_4) \\ - \; (O_2,\theta(m_1,e_2),O_1) \in R_3. \; \text{Results} \; \exists d_6 \in Ded(\mathcal{S}_3), \, d_6 = ([O_2,O_5,O_1],\, \theta(m_1,e_2),O_1). \end{array}$

 $\begin{aligned} &-(O_2,\theta(m_1,e_2),O_1) \in R_3. \text{ Results } \exists d_6 \in Ded(\mathcal{S}_3), \ d_6 = ([O_2,O_5,O_1], \ \theta(m_1,e_2)). \text{ We have } d_6 \Rightarrow_H^* \sigma_3(h([O_2,O_5],m_1),h([O_5,O_1],e_2)). \text{ Thus } Val_{\mathcal{I}_3}(\sigma_3(h([O_2,O_5],m_1),h([O_5,O_1],e_2))) = Alg_{V(\theta(m_1,e_2))}^{\mathcal{S}_3}(Val_{\mathcal{I}_3}(h([O_2,O_5],m_1)), \\ &Val_{\mathcal{I}_3}(h([O_5,O_1],e_2))) = Alg_{\theta(\theta(PL,B),\theta(PB,L))}^{\mathcal{S}_3}(Y_{\theta(PL,B)}(O_2,O_5),Y_{\theta(PB,L)}(O_5,O_1)) = Y_{\theta(\theta(PL,B),\theta(PB,L))} \ (O_2,O_1) \ \text{ (see Figure 9(a))} \end{aligned}$

- $(O_3, \theta(e_1, m_1), O_5) \in R_3. \text{ Results } \exists d_7 \in Ded(\mathcal{S}_3), d_7 = ([O_3, O_2, O_5], \theta(e_1, m_1)). \text{ We have } d_7 \Rightarrow_H^* \sigma_3(h([O_3, O_2], e_1), h([O_2, O_5], m_1)). \text{ Thus } Val_{\mathcal{I}_3}(\sigma_3(h([O_3, O_2], e_1), h([O_2, O_5], m_1))) = Alg_{V(\theta(e_1, m_1))}^{\mathcal{S}_3}(Val_{\mathcal{I}_3}(h([O_3, O_2], e_1)), Val_{\mathcal{I}_3}(h([O_2, O_5], m_1))) = Alg_{\theta(PB, \theta(PL, B))}^{\mathcal{S}_3}(Y_{PB}(O_3, O_2), Y_{\theta(PL, B)}(O_2, O_1)) = Y_{\theta(PB, \theta(PL, B))}(O_3, O_5) \text{ (see Figure 9(b))}$
- $\begin{array}{l} -(O_3,\theta(e_1,\theta(m_1,e_2)),O_1) \in R_3. \text{ Results } \exists d_8 \in Ded(\mathcal{S}_3),d_8 = ([O_3,O_2,O_5,O_1],\\ \theta(e_1,\theta(m_1,e_2))). \text{ We have } d_8 \Rightarrow_H^* \sigma_3(h([O_3,O_2],e_1),\sigma_3(h([O_2,O_5],m_1),\\ h([O_5,O_1],e_1)). \text{ Thus } Val_{\mathcal{I}_3}(\sigma_3(h([O_3,O_2],e_1),\sigma_3(h([O_2,O_5],m_1),h([O_5,O_1],\\ e_1))) = Alg_{V(\theta(e_1,\theta(m_1,e_2)))}^{S_3}(Val_{\mathcal{I}_3}(h([O_3,O_2],e_1)),Val_{\mathcal{I}_3}(\sigma_3(h([O_2,O_5],m_1),h\\ ([O_5,O_1],e_2))) = Alg_{\theta(PB,\theta(\theta(PL,B),\theta(PB,L)))}^{S_3}(Y_{PB}(O_3,O_2),\\ Y_{\theta(\theta(PL,B),\theta(PB,L))}(O_2,O_1)) = Y_{\theta(PB,\theta(\theta(PL,B),\theta(PB,L)))}(O_3,O_1) \text{ (see Figure 9(c))} \end{array}$

Fig. 9. 9(a) shows $Y_{\theta(\theta(PL,B),\theta(PB,L))}(O_2,O_1)$, 9(b) shows $Y_{\theta(PB,\theta(PL,B))}(O_3,O_5)$ and 9(c) shows $Y_{\theta(PB,\theta(\theta(PL,B),\theta(PB,L)))}(O_3,O_1)$

References

- N. Ţăndăreanu, M. Ghindeanu, Hierarchical Reasoning Based on Stratified Graphs. Application in Image Synthesis., 15th International Workshop on Database and Expert Systems Applications, Proceedings of DEXA2004, Zaragoza, Spania, IEEE Computer Society, Los Alamitos California, p.498-502, 2004
- M. Ghindeanu, Deductive Paths and the Reasoning in Semantic Schemas, PhD Report, University of Pitesti, Faculty of Mathematics and Computer Science, 2008
- 3. M. Ghindeanu, Hierarchical Distributed Reasoning Systems based on Hyperschemas, PhD Report, University of Pitesti, Faculty of Mathematics and Computer Science, 2008