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Abstract. The computational complexity of reasoning with the Dempster-
Shafer theory of evidence is one of the main criticism of this formalism.

A possibility to overcame this difficulty is to reduce the number of fo-

cal elements; various algorithms have been suggested with this goal.
We propose a combination of three such algorithms in order to obtain

a new one.
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1 Introduction

Information can be incomplete, imprecise, vague, contradictory or deficient
in many ways. In general, these types of deficiencies of information produce dif-
ferent types of uncertainty. It is difficult to avoid uncertainty when attempting
to make models of the real world. Uncertainty is inherent to natural phenom-
ena and it is impossible to create a perfect representation of reality. Classic
mathematics deals with ideal worlds where perfect geometric figures exist and
can verify various conditions. The works of Zadeh in fuzzy sets [9] and Demp-
ster [2] in belief functions have been represented new possibilities for working
with uncertain information. Belief functions offer a non Bayesian method for
quantifying subjective evaluations by using probability. In 1970s, it was fur-
ther development by Shafer, whose book [5] remain a classic in belief func-
tions, the so called Theory of Evidence. These theory has been also called the
Dempster-Shafer Theory (DST). In the 1980s, the scientific community work-
ing in Artificial Intelligence got involved in using DST in various applications
and the process of mathematical formalization have been continued and it con-
tinue today, too. There are many publications and congresses dedicated to
uncertainty and its related fields. The increasing of computational power has
offered new possibilities of working with uncertain information in various areas
of science and technology: mathematics, engineering, medicine, business, social
science. The computational of complexity of reasoning within the DST is one
of the main criticism that accompanies this method. Orponen [4] shows that
the combination of two basic probability assignment (bpa’s) using Dempster’s
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rule is #P complete ( the class #P is functional analogue of the class NP of
decision problems). To overcame this difficulty, various approximation methods
have been suggested. Because the number of focal elements heavily influences
the computational complexity of combination various independent pieces of ev-
idence, these algorithms give approximations of bpa values by removing focal
elements and/or redistributing the corresponding numerical values. In this pa-
per we propose a new method obtained by combining three known algorithms.

2 Approximation algorithms

Dempster-Shafer Theory aim to provide a theory of partial belief. It at-
tempts to overcame the representational deficiencies within the probability
theory as well as to provide some mechanisms for making inferences from the
available evidence. The frame of discernment 2 is the set of mutually exclusive
and exhaustive propositions of interest. An important role in Dempster-Shafer
theory is played by the basic probability assignment (bpa) or the mass function,
denoted by m.

Definition 1. The basic probability assignment associated with a frame of dis-
cernment {2 is a function
m:2% —[0,1]

that assigns a numerical value to each subset of {2 and satisfies the following
properties:
m(@) =0

Definition 2. Subsets A C 2 with m(A) > 0 are called the focal elements.
Two bpa’s m; and mg can be combined using the Dempster’s rule [2]

_ ZAI N A=A mi(A1)ma(Asz
= ZAlﬂ AptD Tnl(Al)TTLQ(AQ) .

(m1 & ma)(A)

Given a frame of discernment of size |f2| = N, a bpa m can have up to 2V
focal elements all of which have to be represented explicitly to capture the
complete information encoded in m. It results that the combination of two
bpa,s requires computation of up to 2V+! intersections. Orponen [4] showed
that the combination of various pieces of evidence using Dempster’s rule has
a #P complexity. Reducing the number of focal elements of the bpa’s under
consideration while retaining the essence of the information is an important
problem for Dempster-Shafer theory. The most important algorithms known in
the literature in order to solve this problem are the following.
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2.1 The Bayesian approximation

This approximation [8] reduces a given bpa m to a probability distribution
mpg

ZS/AQS m(S)
mp(A) = { 2cjecalClm(C)

0 otherwise

if |Al=1

Example 1 Let m be a bpa over the frame of discernment §2 = {a,b,c,d, e}
with the values

0.33 if A={ab}
03 if A={a,bc}
m(A) = 027 if A={bc,d}
0.06 if A={cd}
0.04 if A={de}

Applying the Bayesian approximation to m yields the following result
0245 if A={a}
035 if A={b}
mp(A) ~ 0245 if A={c}
0.143 if A={d}
0.015 if A={e}

This example shows that the Bayesian approximation is not reasonable in the
cases when the number of focal elements of the input bpa is < [£2].

2.2 The k-I-x method

The basic idea of this approximation [7] is to incorporate into the approx-
imation myi, only at least £ and at most [ focal elements with the highest
values in the original bpa and having the sum of the m-values at least 1 — x
where z € [0,1). Finally, the values from the approximation are normalized in
order to guarantee the basic properties of bpa.

Example 2 For the bpa m given in the previous example and the values k =
2,1 =3 and x = 0.1 the following result is obtained

11/30 ~ 0.366  if A={a,b}
M (A) = < 1/3 7~ 0.333 if A={a,bc}
3/10 = 0.3 if A={bc d}
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2.3 Summarization

This method [3] works likewise as klz. Let k be the number of focal elements
to be contained in the approximation mg of a given bpa m. M denotes the set
of the k — 1 subsets of 2 with the highest value in m. Then mg is given by

m(A) if AeM
ms(A) =4 D pcangum(A) if A=A
0 otherwise

where Ag is defined as
Ag = U Al
A'gM,m(A")>0

Example 3 For the bpa m from the Example 1 and k = 3, mg has the following
values

033 if A={a,b}

mgs(A)=<¢03 if A={a,bc}
037 if A={b,c,d e}

2.4 The D1 approximation

Let m a bpa to be approximated and k the desired number of focal elements
of the approximated bpa mp. The following notations are usefully:
a) M is the set of k — 1 focal elements of m with the highest values

]\4Jr = {1417 ...7A]€,1 - Q/VA g ]\4Jr : TTL(Ai) > TTL(A)7i = 1727 7k - 1}
b) M~ is the set containing all other focal elements of m:
M- ={AC2/m(A)>0,AgMT}.

Given a focal element A € M~ of m the collection M4 of supersets of A is
computed; if M4 is empty (i.e. M T contains no supersets of A) then the set
M, is computed:

My = {BeM*/|B|= A, BNA# 0},

where |A| represents the cardinality of the set A.
The ideas of the D1 algorithm are [1]:

i) all the members of M are kept as focal elements of m p;

ii) for every A € M, the value m(A) is distributed uniformly among the
members of M4 with the smallest cardinality;

i) if M4 is empty then the value m(A) is shared among the smallest mem-
bers of M;x and the value to be assigned to a focal element depends on the size
of its intersection with A.
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iv) the procedure of distribution masses is invoked recursively until all of
m(A) are assigned to the members of M T or the set M;x becomes empty. In this
case, the remaining value is assigned to {2 which thus becomes a focal element
of mp.

The approximation mp of a bpa with n focal elements can be computed in
time O(k(n — k)).

Example 4 For the bpa m from the Example 1 and k = 3, the algorithm D1
yields the following values

033 if A={a,b}
mp(A) =14 051 if A={a,b,c}
0.16 if A={a,b,cd e}

3 A mixed algorithm

An analysis of the approximation of the original bpa is made in [1] and
the conclusion is: the ”best” approximation algorithm with respect to decision
making does not exist. However, the k—{— 2z, D1 and Bayesian approximations
yield definitely better results that the summarization does.

In this paper we propose a new algorithm obtained as a combination be-
tween the k — [ — z, summarization and D1 algorithms. Let m be the bpa to be
approximated; this combination is constructed in three steps, to obtain a new
approximation mps:

S1) Given the parameters k, [, z, having the same signification as in the
k — | — x method, we keep at least k and at most [ focal elements, from the
original bpa, with the sum of m-values at least 1 — x; let M be the set of these
focal elements.

S2) The set M is considered as the set M* from the D1 algorithm. The
focal elements not included in the set M at the step S1 play the role of M~
set in the D1 algorithm.

S3) The components of all focal elements A € M~ not distributed among
the members of M4 or M, are included in a new focal element; the my-value
of this set is computed as sum of m-values of its components. This idea is used
by the summarization method to construct the set Ag.

Example 5 For the bpa m from the Fxample 1 and k=3, 1 =2 and x = 0.1,
the algorithm M yields the following values:

Step S1): Removing {c,d} and {d,e} from m, the constraints concerning the
number of focal elements and the numerical mass deleted are satisfied. Thus,
the following approximation is obtained

033 if A={a,b}
ma(A) =< 03 if A={a,bc}
027 if A={becd}
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Steps S2 and S3: The Step S2 is applied with the following sets parameters:
M* ={A1,As, A3}, M~ = {A4, A5}

mar2(A1) = mae({a,b}) = mar ({a,b}) = 0.33
mar2(Az) = ma2({a, b, c}) = man ({a,b,¢c}) = 0.3
mar2(A3) = mar2({b, ¢, d}) = mari ({b, ¢, d}) = 0.27

mum2(As) = ma2({c,d}) = m({e,d}) = 0.06
mar2(As) = mae({d, e}) = m({d, e}) = 0.04.

The set Az € M™ is the unique superset of Ay € M~ , such that the value of As
is increased by 0.06. Furthermore Az covers half of the elements of As which
adds up another 0.4/2 = 0.02 to ms value of As. The rest is assigned to {e},
the set constructed in the Step S3. The approximation mys of the original bpa
m is:

033 if A={a,b}
03 if A={abc}
035 if A=I{becd
002 if A={e}

TTL]W(A) =

An analysis of the error measure associated to an approximation algorithm can
be made using the pignistic probability P induced by a bpa that can be con-
sidered the standard function for decision making in Dempster-Shafer Theory

[6]. It is given by
Pan= Y M
AjzeACQ 4]

The error quantifies the maximal deviation in the pignistic probability induced
by an approximated bpa. Let Py be the pignistic probability induced by the
original version of a bpa m and P,/ the one induced by the approximation m’.
Then the error measure is defined as

Error(m’) = Z |Po(A) = P (A)].
ACD

For the approximations from the previous examples, we obtain:
Error(mg) = 0.3225,
Error(myg,) = 0.19,

Error(mp) = 0.466,
Error(mys) = 0.186.
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One observes that the best result is given by our approximation m ;. We notice
that, in all experiments the mixed algorithm gave better results than the D1
algorithm from which it is derived. If we increase the number of focal elements
of the approximation algorithms the error decreases, because a greater number
of focal elements from the original version of the bpa and the approximated
bpa coincide.

The mixed algorithm can be implemented as follows
input: m, k, [, x; output: mp

P1) S:= focal elements of bpa m, sorted in decreasing order w. r. t. m
-values

P2) keep the focal elements of m that satisfied the condition
(nf <) and ((nf < k) or (tmass < 1—x))
where nf and tmass are the number and the total mass of these focal
sets

P3) M := the sets given by P2
M~ :=S\M*
mpr(A) :=m(A) VAe M+
R:=0
WL]W(R) =0
for all A€ M~
do
My :={BeM"/AC B}
if My #0
then
M :={B € M,/|B| is minimal in M4}
for all B € M/,
do

— m(A)
WL]w(B) = WL]w(B) + |M1/4|
end do
else
Na={BeM*/|B|>|A,AN B # 0}
if Nga=10
then
R:=RUA
WL]W(R) = WL]w(R) =+ WL(A)
else

Ny :={B € N4/|B| is minimal in N4}

Ny ={B,...,Bn}

for all a € A let ny = the number of the sets B; € N, :
a € AﬂBl
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A
TTL]\,{(Bi) = TrL]\,f(Bi) =+ |ZL|( n)l

for all b € A with b ¢ (ANU-, B;)

do
R:= RU{b}
A
TTL]\,{(R) = TrL]\,{(R) + W|Lj(4| )
end do
end if
end if

end do

4 Conclusions

Starting from an original basic assignment probability m, we propose an
approximate version obtained as a combination of three very known approxi-
mation algorithms. From the examples presented, it results that in many cases
the proposed algorithm gives better results.
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