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Abstract. From the introduction of the Dempster-Shafer Theory, nu-
merous improvements have been made to it, mostly related to compu-
tation time or to the behavior in high conflicting situations. However,
the mass extraction from a sensor measurement has remained largely
ignored although there are quite a few challenges in this operation.
This paper proposes a mathematical modeling for extracting masses in
a typical sensor fusion problem.
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1 Introduction

The Dempster-Shafer theory is a mathematical theory proposed by Arthur
P. Dempster and Glenn Shafer [1], [2] as a generalization of the Bayesian theory
of subjective probability. Its main application is in sensor data fusion where 2
distinct operations must be performed: first, extract a degree of belief, com-
monly referred as mass, from each sensor and second, combine all the data in a
single mass assignment. Although the latter has been analyzed and improved,
both from an accuracy and from a computation time point of view, in numerous
papers [3], the mass extraction from the sensor data has not been studied as
thoroughly, even though is equally important.

Consider 61, 6, ..., 8, to be the exhaustive and exclusive states under consid-
eration, referred to as elementary hypotheses. Then the set © = {01, 0a,...,0,}
is called the frame of discernment.

Definition 1. A basic belief assignment (BBA), also called mass, is a function
m:2° —[0,1],
where 22 stands for the power set of © , with the following properties:

m(@) =0
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> m(4) =1

AC20

It is important not to confuse the notion of mass with that of probability, since
they are fundamentally different. The mass of a set A expresses the proportion
of evidence that agrees with the fact that the actual state belongs to A, but
makes no claims about the mass of a subset of superset of A. Unlike probability,
m(AU B) is completely independent of m(A) and m(B), as long as

m(AUB)+m(A)+m(B) <1,

otherwise property 2 from Definition 1 would be violated .
From the BBA assignment, a probability interval can be computed:

bel(A) < P(A) < pl(A),YA € 2°

where

bel(A)= > m(B)

Be29 BLA

is called the belief of set A and expresses the proportion of the total data that
supports, at least in part, set A, while

pliA) = > m(B

Be29,BNA#D

is called the plausibility of set A and expresses the proportion of the total data
that does not directly contradict the set A.

Suppose we have 2 sets of data from 2 different sensors, modeled as 2 BBA
assignments mq, ms : 2° — [0,1] . This information can be combined into a
new mass m . There were quite a few combination rules developed since the
introduction of the Dempster-Shafer Theory but for the purpose of this paper
we will use the original rule developed by Dempster, which is still the most
popular despite some criticism on how it deals with conflicting information: all
conflicting masses are ignored via a normalization factor:

m(f) =0,

_ ZX7Y6297XQ y—ami(X)ma(Y)
N 1 — k1o

m(A)

where
k1o = Z my (X)TUQ(Y)
X,Y €28, XNy =0
is called the conflict degree. The greater the conflict degree, the worse the
combination formula performs. Notice that for the extreme value k12 = 1, the
combination fails completely, since the denominator becomes 0.



126 V.-I. Iancu

2 Calculating the mass

Now that the theory behind Dempster-Shafer is understood, the sole prob-
lem that we have is transforming the sensor data into a mass assignment. We
will work with a theoretical model of a robot equipped with an array of sensors.
The ”world” around the robot is modeled as a square grid of size 2n x 2n. The
robot is in the center and has negligible dimensions. For each cell, we have 2 ele-
mentary hypotheses: #;-full ( there is an obstacle in the cell ) and #2-empty. The
frame of discernment is © = {6;,8,} and the power set 2€ = {0,8,6,,0, U8}
, but since we deal with the Dempster rule of combination, we will neglect the
empty set, since it always has a mass/belief/plausibility of 0 and does not affect
the computation.

Suppose we have a measurement of a cell, given by a sensor. We need to
model the measurement as a set of 3 masses: {m(61), m(62), m(6; Ub2)}, which
correspond to cell full, cell empty and cell status unknown, respectively.

2.1 Mass of 81 U 85

We will start with the mass for the unknown situation, since it’s simpler to
compute. The sensor’s accuracy decreases with distance between the robot and
the cell: the mass of m(6; U 8y) is close to 0 at small distances and grows to 1
as the cell distance approaches infinity. With this information in mind, we will
model m(f; Ufs) of a cell using a sigmoid function, more precisely a Gompertz
function:

F(2) = eap(in(Z)eap(~Ga),

where Z is the value at 0, while G expresses the growth rate. Both Z and G
are small positive numbers, the exact value depending on the characteristics of
the sensor. For a cell of vertices

{(@,9), (@ +1Ly), (x,y+1),(x+ 1,y + 1)},

we define

Fleellz,y) = exp(n(Z)exp(~=G/(x +1/2)2 + (y +1/2)?)) (1)

since we consider the distance to a cell, to be the distance to its center (see
Fig. 1 and Fig. 2).

2.2 Mass of 81 and 0,

Suppose the sensor measures a cell to be full. There is an incertitude due
to the distance and also due to the distance finding method. This is usually
done by using 2 identical sensors with a small distance in between and finding
the depth of an object by the difference between the 2 sensor’s measurements
( similar to how human vision works). This is still an area of research and
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Fig. 1. m(61U86,) as a function of the cell distance, from different growth parameters
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Fig. 2. m(0, U 82) and m(01) + m(82)
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Fig. 3. For each cell is given a mass according to the area under the Gaussian curve

current methods are far from perfect. With this in mind, for a cell that has
been measured to be full, we also distribute m(#1) to adjacent cells, using a
Gaussian distribution ( see Fig. 3).

Notice that we are working on a bi-dimensional grid and we need to rotate
the curve around it’s mean, which is the center of the cell. The variance will
depend on the incertitude (through constant K) , so on the function we used
for the unknown mass. Thus, consider a cell cell, ,,) that has been measured
to be full. A cell cell, ,,) will have a m(61) due to cell(z,yq) of :

1 pyrtl
L Lo g, y)dady

I 70 gla,y)dady

m(el)cell(xl,yl) = (1 - f(ce”(xo,yo)))

where

—((z —20)*> + (y — w0)?) .
2K ep(2In(Z)eap(—Go/ro + 1127 1 o T 1727)

(2)

g(z,y) = exp(

The value m(82)ceti(e,,y,) is just the remaining mass up to 1:
+1 g+l
L L el y)dady
250 175 g, y)dady

Suppose we have a cell cell(xg, yo) . Two full cells cell(x1, y1) and cell(z2, y2)
will each give it a mass assignment:

{m1(61),m1(02), m1 (01 UBs)}

m(92)cell(x1,y1) = (1 - f(ce”(xo,yo)))(l
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and
{WL2(91)7 WL2(92)7 WLQ(el U 092)}

What will then be the mass assignment of cell(xo,y0) ? The most reasonable
solution is to combine the 2, into a new mass assignment using the Dempster
rule of combination. Since the rule is associative and commutative there is no
problem in extending this method to any number of full cells. However, this
method has a flaw, from a computational point of view. To exemplify, consider
the following situation. Suppose , we are working with a 200 x 200 grid, or
40000 cells. If a quarter of these cells contain an obstacle, this means that we
have 10000 gaussian mass distributions and to compute the mass assignment
of any of the total 40000 cells we need to combine 10000 measurements, so in
total 4 * 10% Dempster combinations. If we consider the fact that the Gaussian
function decreases rapidly with the distance from the mean, this means that
a full cell will have a significant influence only on the masses of nearby cells.
This gives us the idea to ”"cut” the Gaussian at a threshold:

hi

[ ] | (P

Fig. 4. For values smaller than a threshold we ”cut” the gaussian

The solution to

exp(_(g;’u ) i

oV 2T

is

x:,u:l:a\/—an(\/%iha)
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where th represents the threshold from the Figure 4. Notice that we also need
to rescale the function to keep the area under (or volume for our occupancy
grid application) equal to 1. So the new modeling function becomes:

h .
% if x€(p—a,u+a)
h(.’L‘) = p—a y)ay

0 otherwise

where ( )2
T—p
h = —
() = eap QKQexp(an(Z)exp(—G,u)))

and

a=K- exp(ln(Z)exp(—G,u))\/—2ln(\/ﬁ~ th- K - exp(In(Z)exp(—Gp)))

The mass assignments of cell(x;,y;) due to cellxo,yo) being measured full,
becomes:

JEE [ g, y) dady
[ [ 9z, y)dxdy

where g(z,y) is given by (2) and the integral from the denominator is taken
over all cells with

Tn(el)cell(xnyi) =(1- f(cell(x0~,y0)))

Vwo =207 + (go— 97 < K - eap(e(wo, yo)\ —2in(v2 - th - K) — 2e(w0, yo)

and

c(wo,y0) = In(Z)exp(—=G/ (w0 + 1/2)% + (yo + 1/2)2.
Note that m(01)ceii(x,,y;) = 0 outside the this region.
Again, m(02)ceii(z,,y:) 15 just the remaining mass up to 1:
il pyitl
Jo [ g, y)dady
I | 9(z, y)dady

with the denominator integral taken over the same region.

m(02) cett(x;,y:) = (1 — f(cell(zy o)) (1 —

3 Algorithm

The previous results can be implemented with the following algorithm.
1. For all sensors do steps 2-4.
2. For all cells set m(01 U 02)ceti(z,y) = f(cell(z,y))), with f defined by (1)

3. For all cells cell(z, y) measured to be ” full” set the surrounding cells cell(x;, y;)
with

V=P + =) < K-eaplelw,y)\/-2n(v2m - th - K) = 2c(x,y)  (5)
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and

c(w,y) = In(Z)eap(~=G/(x +1/2)? + (y + 1/2)? :

3.1 If the cell cell(x;,y;) does not have a mass assignment for #; and f then
the values m(01)ceii(z;,y:) and m(82)ceri(a, ,y;) are computed using the relations
(3) and (4), respectively, and the denominator integral is taken over all cells
that satisfies the relation (5).

3.2 The value m(01 U 62)cei(z;,y:) s kept as it as.

3.3 Otherwise combine the above measurement with the one that is already
assigned to the cell using Dempster’s rule.

4. For cells that have not been assigned a mass for 8; and fa: keep m (81 U f2)
and set m(#1) =0 and m(6) =1 —m(6; U 8y).

5. For all cells combine the mass assignments from all sensors using Dempster’s
rule.

4 Conclusions

A mathematical model of mass extraction from real-life measurements to
be used with Dempster-Shafer Theory is presented in this paper.
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