Towards Standards for Modelling and
Executing Collaborative Business Processes

Oana NICOLAE !, Mirel COSULSCHI?, Adrian GIURCA! and Gerd
WAGNER!

! Department of Internet Technology
Institute of Informatics
Brandenburg Technical University at Cottbus, Germany
nicolae, giurca, G.Wagner@tu-cottbus.de,
2Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
mirelc@central.ucv.ro

Abstract. Business Processes are becoming some valuable assets for
the actual industry landscape. Web Services based on the Service Ori-
ented Architecture (SOA) framework provide an appropriate, technical
foundation for making Business Processes accessible within and across
enterprises and assure the independence of tools and infrastructure.
Business Process Modelling (BPM) and SOA facilitate the next phase
of Business Process evolution by enabling dynamic processes. BPM so-
lutions simplify the modelling, design, monitoring and enactment of
complex processes based on decision making. The paper intends to be
a review on BPM techniques: BPDM/BPMN and BPEL/WS-CDL by
describing them using UML models, as the missing link between the
Web Services and Business Processes. Our approach also argues for the
need of standardization on BPM field.

Keywords: business process modelling, UML, BPM, MDA, BPDM,
BPMN, BPEL, WS-CDL, standardization, orchestration, choreogra-
phy.

Math. Subject Classification 2000: 68T30; 68T35

1 Introduction

The need of flexible and scalar business process environments corrobo-
rated with the growing demand for dynamic integration with other services
are the main factors that motivate the continuous development of Web Ser-
vices and Service Oriented Architecture (SOA). These technologies represent
a pivot point in joining intelligent software infrastructure with the purpose to
introduce and enable Web Services and SOA based inter-operability protocols
with modeled business processes.

138 O. Nicolae et. al

Well accepted Web Service standards like UDDI! (OASIS?), WSDL? and
SOAP? (W3CP) represent the first step to solve the integration problem. But
these technologies are not further capable to provide an appropriate environ-
ment where business processes can be developed, shared and managed.

Here is the point where BPM technologies are used. They simply model,
compose and treat Web Services as business processes of an enterprise. BPM
suite is process-oriented, theoretically with no need for programming and there-
fore suitable for business analysts. The business model is not only a business
process documentation, but a design created as a source for executable process
implementations.

As an answer to the necessities of inter-operability and standardization
(i.e. an unique way of understanding the description of business processes
both at the design and at the implementation/enactment levels), Business Pro-
cess Modelling Notation (BPMN [3]), Business Process Definition Metamodel
(BPDM [1]), Business Process Execution Language (BPEL [2]) and Web Ser-
vice Choreography Description Language (WS-CDL [11]) specifications were
developed by OMG®, OASIS and W3C, respectively, having as target the ac-
tual business market.

Our paper is structured as follows: Section 2 presents the motivation for the
chosen subject in the context of BPM market and Model Driven Architecture
(MDAT) approach and its levels of abstraction. Section 3 introduces the OMG'’s
BPDM and BPMN standards and provides brief explanations of the involved
concepts by means of a BPMN metamodel. In Section 4 we present the main
languages from the actual literature which deal with business process collab-
orations i.e. BPEL and WS-CDL. For a better understanding of their basic
concepts, we provide extracts from their UML metamodels. Section 5 discusses
and outlines the main conclusions vis-a-vis our approach.

2 Motivation

The main objective of modelling the business processes is ensuring them
consistency and rigor. As BPM market becomes more mature, there is a visi-
ble, growing interest in the literature on subjects surrounding BPM based Web
Services and Web Services Composition techniques: orchestration and choreog-
raphy.

In orchestration, a central process takes control over the involved Web Ser-
vices and coordinates the execution of different operations on the Web Services

1 UDDI - http://www.oasis-open.org/committees/uddi-spec/doc/
2 OASIS - http://www.oasis-open.org/

3 WSDL - http://www.w3.org/TR/wsdl/

4 SOAP - http://www.w3.org/TR/soap/

® W3C - http://www.w3.org/

5 OMG - http://www.omg.org/

" MDA - http://www.omg.org/mda/

Modelling and Executing Standards 139

involved in the operation. The involved Web Services do not know, and do not
need to know that they are involved into a composition and that they are a part
of a higher business process. Only the central coordinator of the orchestration
(i.e. BPEL process) knows these details, so the orchestration is centralized with
explicit definitions of operations and the order of invocation of Web Services.

On the other side, choreography is a collaborative effort focused on exchange
of messages. All participants of the choreography need to be aware of the busi-
ness process, operations to execute, messages to exchange, and the timing of
message exchanges.

MDA approach introduces a set of basic concepts such as: model, meta-
model, modelling language and transformation. It also divides the known busi-
ness process modelling languages into three distinct levels. Abstract business
process modelling belongs to the Computational-Independent Model (i.e. CIM
- domain model or business model) e.g. business process metamodel provided
by BPDM specification. Platform-Independent Model (i.e. PIM) is also used
to describe a system: it is more specific and lower-level e.g. BPMN (graphical
notation) or WS-CDL (textual notation). Platform-Specific Model (i.e. PSM)
deals with the enactment and includes software implementation details e.g.
BPEL specification.

OMG’s MDA standards such as UML and Meta Object Facility (MOF®)
provide metamodels that claim to define the standard, but they only focus on
the abstract syntax (i.e. the vocabulary). Even it can not provide an executable
model, UML is used to define a rigorous and precise specification to which any
executable program language must conform ([7]). Further in this paper, we use
UML models to briefly describe the core concepts of BPMN 1.1, WS-CDL 1.0
and BPEL 2.0 specifications for collaborative business process modelling and
enactment, respectively.

3 OMG’s specifications for business process modelling:
BPDM and BPMN

OMG’s Business Process Definition Metamodel (BPDM) was started in
2003 as a metamodel for general purpose business processes, initially without a
notation, and later aligned with BPMN 1.1 Specification. [ts purpose is to al-
low tools inter-operability through a common process serialization mechanism.
It also claims to provide support for SOA and to enable business rules integra-
tion within business processes. One of its useful characteristics is the ability
to enable a serialization mechanism for BPMN and to provide a MOF-based
metamodel (i.e. a precise semantics) for BPMN.

Business Process Modelling Notation (BPMN) was proposed as the graph-
ical modelling component of the original set of specifications introduced by

8 MOF - http://www.omg.org/technology/documents/formal/mof.htm

140 O. Nicolae et. al

BFE |

-

Parallel Gale-way fo Lt

¥

— —

; .

o e Lognac | LRt T |l.'uu|l|.l:|'nu|l.l|:1h.u-i | v s
- < h e Fool F_

LA ITAME ..

,iﬁ.-m- I
= T l—f : | 13-k lly
p=y

| nkk e it |!-I.|Ih.-m|| |H|=|l:l|l:t|l|n |M|:w-|||||:rhm'| o
= =
Irrermecd krbcE e m
Bulignmo =1

| T Maimuiam | ' rooner 1-\.IIIIHDI||::I|
o B e
- C.

[y
TimeLue nt 40 EI I

]
d5 meorn gu ATIATE |

Fig. 1. BPMN 1.1 - Core Concepts Metamodel.

the former Business Process Management Initiative (BPMI?), now part of the
OMG.

The aim of BPMN is to provide a notation that is easily understandable
by all business users, from the business analysts which create the initial drafts
of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people
who will manage and monitor them.

The output of a BPMN model was initial intended to be BPML' (Business
Process Modelling Language), whose purpose was to translate the graphical
model into a machine-readable format, in order to allow the interchange of
the business processes definitions. Very similar with BPEL, this metalanguage
developed by BPMI was abandoned, as its description is not bound to WSDL
and the communication protocol is left to a BPML compliant implementation.

BPMN 1.1 uses Business Process Diagrams (i.e. BPDs) to encapsulate its
specific constructs. In the followings, we will describe a BPD from the per-
spective of the BPMN metamodel constructs (see Figure 1). A BPD can con-
tain many BPMN processes. We focused only on the representation of private
BPMN business processes i.e. processes that allow the visualization of the entire
workflow. Each process comprises, at its turn, many Pools (compartmented, if
the logic imposes, in many lanes) which map the business partners involved in

9 BPMI - http://www.bpmi.org/
10 BPML - http://www.ebpml.org/bpml.htm

Modelling and Executing Standards 141

a business process. A process also contains BPMN specific constructs, such as:
flow objects (events, tasks or gateways), connectivity objects (sequence
flows, message flows, associations) and artifacts (e.g. data objects). A task
representing the atomic activity in BPMN 1.1 is identified by the taskType
attribute ([9]). Many tasks can be grouped into sub-processes, for enabling the
reusing of some task groups.

Pools are connected through message flows that carry the information and
provide means for business partners communication. BPMN proves to be an
evolving language (i.e. two Specifications for BPMN 2.0 are competing for
approval [5] [6]). OMG consortium presents BPMN as a powerful tool for rep-
resenting business processes collaborations. Despite their claiming, the current
specification still lacks precision (i.e. no metamodel defined) also in representing
business process choreographies. It only allow a well defined representation of
business processes orchestrations and through a complicated mapping to BPEL
language provides means for executing the obtained business process collabo-
ration. Moreover, the choreography specification is a first target for BPMN 2.0
specification proposals.

4 BPEL and WS-CDL - standards for collaborative
business processes

Business Process Execution Language (i.e. BPEL 2.0) is a portable execu-
tion format that relies exclusively on Web Services (i.e. WSs) resources and
on XML data. It specifies business processes as a set of interactions between
WSs. Nowadays, BPEL is known as the dominant orchestration language on
the business market. BPEL involves only automating processes which invoke
WSs and are defined using Web Services Definition Language (i.e. WSDL).
The BPEL Specification, sustained by IBM, Microsoft, BEA, SAP, and Seibel
Systems, defines a model and grammar for describing the behavior of a busi-
ness process based on interactions between the process and its partners. The
use of WSs is essential to BPEL, which allows the modelling of executable and
abstract processes, and is layered on top of several XML specifications: WSDL
1.1, XML Schema 1.0, XPath 1.0, XSLT 1.0, WS-Addressing,.

A BPEL file is an XML document that conforms to the BPEL XML Schema.
The BPEL file is interpreted at runtime by a BPEL processor (i.e. BPEL
engine) that identifies keywords or activities and executes them as defined in
the BPEL file. Our metamodel has at its basis the XML Schema provided by
OASIS .

The BPEL industry standard is now maintained by OASIS organization, but
at its origins, BPEL represents a joined effort from IBM’s Web Service Flow
Language (WSFL) and Microsoft’s XLANG initiatives. It was developed during
years (now it is at 2.0 version) as a complex and expressive business process

11 OASIS XML Schema - http://docs.oasis-open.org/wsbpel/2.0/0S/process/
executable/ws-bpel_executable.xsd

142 O. Nicolae et. al

|-:-=-—n-ur.u:.-:mwwﬂ:|sa-.u-_|--] |1
_— | -
- = iy g i
[: i
;] = impord L
_- Peilinieand]] - Dookan §| i = Jrera]| : eyl |
L pamescall 1] prylR]
s + 1 loctionfd_1] : arpLim)
[} . H
N i 1 Ercacens. i
+ g T — abmiEets =
; b i | corewsensa
_ perhanguagell 1| seURi MF———————————— S aoHaTe
L eeglR ¢ [propetesdl 7] GMare.
oo bl T 1] - bocsan
vl el FrokD, 1| - bookaan }
E K B
] 1 1
ol —
g wammhim
¥
e .
t e
[amrinbien Vaissie mnis]] = 1 E
v parrarlnia iy
Panaeriing h,
"f;:_:‘i;_"l’l-"‘:;;_# e _|.-.-.--:w.u.-l'--.uu-t-a-.-.-n. v 1] |_|
1| | MR
Pl 1] - modnan
Fig. 2. BPEL 2.0 - Core Concepts Metamodel.

execution language providing an unique, rich support for communication and
workflow patterns.

However, this complexity also conducts to many overlapping BPEL con-
structs that makes the semantics of the language to be sometimes unclear and
leads to misunderstandings. A simplification of the language is then needed.
Still, no actual tools offer a BPMN model execution, but only a BPMN to
BPEL translation and then the execution of the resulting business process.

BPEL supports two different types of business processes:

— Executable processes allow the specification of the exact details of business
processes. They can be executed by an orchestration engine.

— Abstract business protocols allow the specification of the public message
exchange between participating parties only. They do not include the in-
ternal details of process flows and are not executable.

An executable BPEL process describes the complete, internal workflow of a
business process and can express conditional behavior, for example, a Web Ser-
vice invocation can depend on the value of a previous invocation. It can also con-
struct loops, declare variables, copy and assign values, define fault handlers.
By combining all these constructs, it can define complex business processes in
an algorithmic manner. Figure 2 represents an overview of the entities that are
comprised by a BPEL executable business process (i.e. BPEL program). We

Modelling and Executing Standards 143

used composition oriented arrows to express the compositions for a Process
type class. The only mandatory element from the Process class composition
structure is the Activity class that contains the entire logic of the BPEL pro-
gram, revealing this way the procedural programming aspect of the language.

A particular concept belonging to BPEL is PartnerLink. A partner link is
used to express the interactions between an executable process and its partners
(i.e. a WS provider/consumer or a two-way long running asynchronous conver-
sation, P2P, where both the BPEL process and its partner are providers and
also consumers).

Interactions are defined by means of Web Service activities such as:
receive, invoke or reply. The syntax of these activities implies the pres-
ence of a partner link, its port type and operation. The port type comes
from the associated partner link type. meaning that the process can accept
incoming message data from the service playing the partner role defined in the
partner link. Inside a partner link specification there must be at least one role
declaration.

1.<process name="Travellnfo" targetNamespace="http://maps.org/bpel/travelinfo"
2 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

3 xmlns:map="http://maps.org/wsdl/mapinfo"

4. xmlns:wea="http://weather.org/wsdl/weatherinfo"

5. xmlns:rest="http://restaurant.org/wsdl/restaurantinfo"

6 xmlns:trav="http://maps.org/wsdl/travelinfo/">

7

8

<partnerLinks>
<partnerLink name="TravelInfoPL" partnerLinkType="trav:TravelInfoPLT"
9. myRole="TravelInfoServiceProvider"/>
10. <partnerLink name="MapInfoPL" partnerLinkType="map:MapInfoServicePLT"
11. partnerRole="MapInfoServiceProvider"/>
12.

13. </partnerLinks>

Usually, a BPEL business process has at least one invoked partner link,
because it will most likely invoke at least one web service, as can be seen in
the above example.

BPEL uses the variable concept in order to receives/manipulates/sends
data. BPEL relies exclusively on XML data, so the variables must be defined as
WSDL message types, XML schema types or XML schema elements. They can
be declared globally (as a child of process element) or locally (inside a scope
activity). Variables in receive, onMessage, onEvent, and inbound invoke ac-
tivities are automatically initialized. The initial value of a variable is validated
against the schema or WSDL definition during process execution. A variable
can also be initialized when it is declared, or later using an assign activity. A
variable can be validated using a validate activity.

14.<variables>

15. <variable name="inboundTravelInfoRequest" messageType="trav:getTravelInfo"/>
16. <variable name="outboundTravelInfoResponse"

17. messageType="trav:getTravelInfoResponse"/>

18. <variable name="outboundMapInfoRequest" messageType="map:getMapInfo"/>

19. <variable name="inboundMapInfoResponse"

20. messageType="map:getMapInfoResponse"/>

21.</variables>

Regarding the internal structure of any BPEL process (i.e. procedural pro-
gramming language with specific Web Service constructs) the reader can see it
is composed from basic elements called activities.

144 O. Nicolae et. al

There are two kinds of activities: basic activities and structured
activities. Basic activities represent primitive types of activities such as:
invoke/receive/ reply activities - that we have distinctly grouped into WS-
Activity class - together with assign (i.e. copy data from one data container
to another one; a data container can be represented by a variable or by a data
literal; an assign activity can update any number of variables), wait (i.e. keep
the business process idle for some specified time interval; when the specific time
is reached, the business process continues its execution), throw/rethrow (i.e.
expose the errors that can appear during a business process execution: faults
that should be catch by fault handlers), exit (i.e. abandon the execution of
the business process instance and all in use activities must terminate without
any fault handling or compensation behavior) and empty (i.e. this activity has
no effect; it is used for synchronizing concurrent activities).

Using the WS Activity concept inside our UML class diagram, we classify the
types of BPEL activities that implies the communication between the business
process partners (i.e. exchanged messages) in synchronous and asynchronous
types of communication. The WS activities are: invoke, receive, reply.

22.<invoke name="invokeMapInfo" partnerLink="MapInfoPL"

23. portType="map:MapInfoInterface" operation="getMapInfo"

24. inputVariable="outboundMapInfoRequest"

25. outputVariable="inboundMapInfoResponse"/>

26.<reply name="replyTravelInfoResponse" partnerLink="TravelInfoPL"
27. portType="trav:ClientInterface" operation="getTravelInfo"
28. variable="outboundTravelInfoResponse"/>

Invoke activity calls an operation of a partner. A BPEL process immedi-
ately continues its execution after invoking a one-way operation. When a BPEL
process invokes a request-response operation, the activity blocks the execution
of the BPEL process until a response message or a fault message is received.

Reply activity is used in combination with a receive activity to provide
a request-response operation. This activity sends a reply message or a fault
message as a response to a message received by the receive activity.

The code samples presented above represents a common way to obtain a
SOA-based composition (i.e. BPEL orchestration) of Web Services. Its basic
architecture stack is SOAP and WSDL compliant (i.e. any BPEL program is
in fact a Web Service and uses WSDL for describing the services orchestration,
therefore the transport protocol is SOAP) and comprises components such
as: the registry for Web Services publication, the security layer that maintain
some authentication of the involved partners, the reliable messaging layer that
guarantees the exchange of information between corresponding partners, the
context-coordination-transaction layer that enable a global agreement protocol,
the business process languages layer with the purpose of describing the business
process inner, execution logic. A further layer in the stack of business process
composition the actual literature focus on, is represented by the concept of
business processes choreography (see Figure 3). In this context, WS-CDL is
the promoted language, developed and sustained by W3C community. It is
described as a solution for automating P2P collaborations, within or across

Modelling and Executing Standards 145

#5aTi [——
| e aliron gl I’.I".'m'l:’.“rr Iwu_n
Uamrotos
Tnzrmai
= f k - ST iOrcrestraan beyer)
A | [T A—
o L | el | | Caevina | sechasmration
— - 0 fi R e
My iamdbar | Koot
Sereire | | Gowricc Eun{:.l L RE
L S— - - e — e

Fig. 3. WS-CDL Choreography Architecture.

organizations trusted domains, by clearly defining the rules of participation
that are jointly agreed. As a language it has the following characteristics:

— It is not an executable language, therefore not depending on any specific
business process implementation.

— A WS-CDL compliant choreography is represented by an XML-based docu-
ment describing a multi-participant collaboration engagement. The roleTypes,
relationshipTypes, channelTypes are WS-CDL concepts that depict the
participants involved in the choreography and their coupling.

— Each participant to the choreography can be implemented independent of
the supporting platform and using different mechanisms such as business
process languages (i.e. BPEL, BPML) or programming languages (i.e. Java)
or human controlled software agents.

— WS-CDL is also layered on top of the following XML specifications: XML
1.0 (Namespaces, Schema), XPath 1.0, WSDL 1.1/WSDL 2.0.

For a better understanding of the concepts we construct a WS-CDL 1.0 meta-
model based on the informal description that WS-CDL Specification provide.
The root element is the package construct (see Figure 4.). Its authoring proper-
ties are defined by the attributes: name (mandatory), author and version (op-
tional). The targetNamespace provides the namespace associated with all WS-
CDL type definitions contained in the choreography package. Inside a choreog-
raphy package we can define many choreographies and also we can include other
WS-CDL type definitions that are defined in other choreography packages i.e.
zi: include href="otherChoreography.xml”.

The participant of a WS-CDL choreography is modelled by a participantType
construct. It groups the behavior that is to be implemented by the same logical
entity or abstract organization. In this context, roleType concept is used in or-
der to enumerate the potential Behavior a participant can exhibits in order to
interact. A Behavior element may define an optional Interface element that
represents an analogous WSDL interface type. relationshipType represents
the jointly agreed commitments between the participants. A relationshipType

146 O. Nicolae et. al
IprraionTveas dhoreomnpties | Ghareegraghy |
L [| 0% Lnene Srogn| |
Informetion fymn WO L Package et Esoman] |
sm.theor - Siring [01] i
O T version: Shing [01] o [OBENLOCEIOFE
. | AT * B hiame 1] =3
ChaneelTy Sargettianarpace | LRI [1] X] " e ——
! Tideand oasbor ActionTyoe
i il ¥ ¥ ¥ FOG LUC57- 7257 M2
i) I BT | (e
-nclic: Aosonly e L il
ez e ra i o0 il ML
ompases 1 HIL n
w 1 Token | o e o e
Hols [yp ol i dimn Tpne AT E
Tymihd o =
TNt Tl FF
ET]
SR B e SHARD
[Pan Finzipnn Tygn: L
—_—ugia
|n:e|u|umn|pnm-e|
ST 15 1]
btz s

i=

%
Lhahauseur -

e biliafuc:

P e (1] _ |

Fig. 4. WS-CDL - Core Concepts Metamodel.

must have exactly two roleTypes defined, each specified by TypeRef construct
which must reference the name of the appropriate role type. Inside of a
participantType, one or more roleType(s) may be defined corresponding to
the roles that the participant must implement. The ChannelType construct
specifies how and where the message information (both static and dynamic) is
exchanged between ParticipantTypes.

5 Conclusion and Future Works

In this paper we have discussed the importance of BPM techniques for the
actual business market by outlining the relevance of the relationship between
Web Services and Business Processes. The paper also sustains the need of stan-
dardization on BPM and Web Service related fields. Briefly explanations about
BPMN 1.1, WS-CDL 1.0 and BPEL 2.0 core concepts were given by means of
UML meta-models. The importance of UML for modelling software system is
also mentioned and argued. Future works on this area covers a technical report
on BPEL 2.0 Specification and a complete meta-model for WS-CDL 1.0.

References

1. *** (BPDM 1.0) Business Process Definition Metamodel (OMG), www.ong.org/
cgi-bin/doc?bei/03-01-06, 2006.

9.

Modelling and Executing Standards 147

. *** (BPEL 2.0) Business Process Execution Language (OASIS), http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html, 2006.

. ¥ (BPMN 1.1) Business Process Modeling Notation 1.1, (OMG), http://www.

omg.org/cgi-bin/doc?dtc/2007-06-03, 2007.

. R. Khalaf, A. Keller, F. Leymann, Business Processes for Web Services: Prin-

ciples and Applications, IBM Systems Journal, Celebrating 10 Years of XML Vol-
ume 45, Number 2, 2006.

. ¥ (BPDM Team) Adaptive, Axway Software, EDS, Lombardi Software, MEGA

International, Troux Technologies, Unisys, BPMN 2.0 Specification Proposal,
http://www.omg.org/cgi-bin/doc?bmi/08-02-03, 2008.

. ¥ (BEA, IBM, Oracle, SAP), BPMN 2.0 Specification Proposal, http://www.

omg.org/cgi-bin/doc?bmi/08-02-06, 2008.

. T. Clark, P. Sammut, J. Willans, Applied Metamodeling. A Foundation for

language driven development. (Second Edition), Ceteva 2008.

. F. Leymann, D. Roller, M.T. Schmidt, Web Services and Business Process

Management, IBM System Journal, Volume 41, Number 2, 2002.
O. Nicolae, M.Cosulschi, A. Giurca, G. Wagner, Towards a BPMN Seman-
tics using UML models, CBP 2008 Workshop, Milano, Italy, 2008.

10. J. Mendling, G. Neumann, M. Nittgens, A Comparison of XML Inter-

change Formats for Business Process Modelling, EMISA 2004.

11. *** (WS-CDL 1.0) Web Services Choreography Description Language (W3C),

http://www.w3.org/TR/ws-cdl-10/, 2005.

