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Abstract. Suppose we have a real Banach space E and K a nonempty
subset of E. Let T be a map on K. This paper analyzes the conver-
gence of the Mann iteration process to a fixed point of T. In the same
conditions as above, the convergence of Ishikawa iteration to a fixed
point of T is analyzed. The paper compares the fastness of these two
convergence when there are imposed condition to T and K.

1 Introduction

Let K be a closed convex subset of a real Banach space E. We consider T a
map from K to K with nonempty fixed point set(F(T) # 0).

Definition 1. The mapping T is called pseudocontractive if and only if
llz =yl < [+ t)(z —y) — (T — Ty)||
for any t >0 and for any x,y € K.

A generalization of pseudocontraction is the strongly pseudocontractive
mapping.

Definition 2. The mapping T is called strongly pseudocontractive if and only
if there exists ¢ > 1 such that

llz = yll < |1+ ) (2 —y) — ct(Tz — Ty)||
for any t > 0 and for any x,y € K.
Let us consider the following two sequences:
1. The sequence {xy, }n>o defined by
Tpy1 = (1 = cp)zy + ey Txy, with ¢, € (0,1) and 29 € K

is called the Mann iteration.
2. The sequence {yy}n>0 defined by
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Ynt+1 = (1 = en)yn + e T[(1 — an)yn + anTyy], with ap,c, € (0,1) and
yo € K
is called the Ishikawa iteration.

In some condition the Mann iteration and the Ishikawa iteration are equiv-
alent concerning the convergence to a fixed point of the mapping T. Such a
case is analyzed in this paper. From the theorem 2.1 of B.E. Rhoades and
S.M. Soltuz from [1], we have that for a strongly pseudocontractive mapping
T: K — K, K a closed convex bounded subset of a real space E, for ¢y = yo,
the following relations are equivalent:

— Mann iteration converges to a fixed point of T
— Ishikawa iteration converges to a fixed point of T.

where Mann iteration and Ishikawa iteration are defined earlier.

2 Main result
Definition 3. T : K — K is called generalized Lipschitzian mapping if there
exists L > 0 such that

[|Tx—Ty|| < L1+ ||z —y||), for any z,y € K.

As an extension to the theorem of Rhoades and Soltuz we have the following
theorem:

Theorem 1. Let E be a real space, K a closed conver subset of E and T :
K — K a strongly pseudocontractive mapping and we define the following two
sequences:

1. {wn}nzo deﬁned by
Tnt1 = (1 — ¢n)zn + cnTxy, with ¢, € (0,1) and g € K
2. {yn}nzo deﬁned by

Ynt1 = (1 — en)yn + e T[(1 — an)yn + anTyy], with a,,c, € (0,1) and
yo € K

The following relations are equivalent:

— Mann iteration converges to a fized point of T;
— Ishikawa iteration converges to a fixed point of T.

Proof
(1) =(2)
Let 2* be a fixed point of T and let’s assume that

||zn — 2*|] — 0 when n — oo.
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We must prove that
[|yn, — 2*|| — 0 when n — oo.
For this, we have the following relations:
||yn+1—xn+1||2 = ||(1_Cn)yn+CnT[(1_an)yn+anTyn]_(1_va)va_CnTxn||2 =
= [1(1 = ) (Y = xn) + ca(T[(1 = an)yn + anTyn] = Twn)|] <
< (1= cn)?llyn — @nll® + 26(T[(1 = an)yn + anTyn] = Tn, j(Ynt1 — Tnt1)) <
< (1= cn)?llyn = @nll? + 26(T[(1 = @n)yn + anTyn] = T, j(yn — 20))+
+2¢,(T[(1 = an)yn + anTyn] = T, j(Ynt1 — Tng1) = J(Yn — Tn)) <
< (1= cn)?llyn — @l + 20011 = an)yn + anTyn — 2nl>+

+2an||T[(1 - an)yn + anTyn] - Txn”*

(B — (eI + Hyn — al]) <
< (1 — Cn)2||yn - xn”? + 2ank||(1 - an)yn + anTyn - xn”"’)

+2anL(1 + ||(1 - an)yn + anTyn — -’L'nH)An(l + ||yn - xn”

where A, = [|i({5—=25) — i (2l

Because A,, converges to 0 when n — oo we have the equivalent relations:

||(1 — (ln)yn + anTyn — x"”Q =
||(1 - (ln)(yn - xn) + an(Ty" - T‘T") + a’"(Tx" - x")H <

< (1 — an)2||yn - anQ + 2an<Tyn - T-ij((l - an)yn + anTyn - xn)>+
+2an{Txn — T, 5 (1 = @n)yn + anTyn — ) <

< (1 — an)2||yn - anQ + 2ank||yn - xn||2+

+2an L1+ |y — ||| (D=3 e T b0 00 — ()| (1 4| [y, — )+
+2an||Txn — 2nl|[|(1 = an)yn + anTyn — x|
So we have the following relation:
lyns1 = 2> < (1= an(l = K))llyn — znll?

= ||lyn — znl|| — 0,m — o0.

We have the following relations:
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0< ||yn*w*|| = ||yn7wn+wn7w*||
0 < [lyn — all + ||zn — ¥
llyn — 27| = 0, — oo.

(2)=(1)
If in the relation

Yn+1 = (1 - Cn)yn + C'ILT[(I - an)yn + (lnTyn]

we replace a,, = 0 then we obtain

Yn+1 = (1 - Cn)yn + CnTyn

So, if we assume that {y,},>0 converges to a fixed point of T then, for
a, = 0, we obtain that {z,},>0 converges to a fixed point of T. So this part is
proved.

3 Conclusions

We observe that if the mapping T satisfies the conditions of the above
theorem then the sequences generated by Mann iteration and Ishikawa iteration
are equivalent in what concern the convergence to a fixed point of T.

If the mapping T is Lipschitz then it is continuous and generalized Lipschi-
tian, so for any Lipschitz mapping the sequences generated by Mann iteration
and Ishikawa iteration equivalently converges to a fixed point of T.

The same thing happened when T is bounded.
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