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Abstract. In this study, we investigate the use of rough sets and an
artificial neural network as a classification mechanism for predicting the
hydrogen gas production from a sucrose-based completely stirred tank
reactor (CSTR). The data that was modeled consisted of a set of typical
CSTR parameters and the hydrogen gas production from this system
over a period of 12 hours. There were a total of 12 attributes relating
to the typical operation of a bioreactor, and a single continuous output
variable, corresponding to the concentration of hydrogen gas produced
over time. In this preliminary study, the goal was to investigate how
the features/parameters correlated with the hydrogen gas output of
the bioreactor. Rough sets was employed to determine the correlation
of the features with the output variable - and during this process the
parameter space was reduced. The results indicate that 4 of the 12
attributes were critical with respect to predicting the decision output.
We tested the efficacy of the reduced feature space with respect to
classification using a multi-layer perceptron type neural network. The
results using a multi-layer perceptron (MLP) were in excess of 90%
in most cases (full and reduced feature space), indicating that this
approximation approach provides a reasonable model.
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1 Introduction

With the current energy crisis, alternative sources of energy are in high
demand. The utlization of hydrogen (H2) gas produced from typical waste
products may provide a source of energy that is both clean and is based solely
on recycled materials [1]. Typically, most hydrogen production is based on
dark fermentation bioreactors - implemented as completely stirred tank reac-
tors (CSTRs). These systems provide the medium through which microbiolog-
ical processes convert waste products into an energy source. In this study, a
dataset from a CSTR was examined in order to determine whether the hydro-
gen gas production output from a typical CSTR can be predicted based on
the values of key bioreactor parameters, depicted in table 1. In addition, since
there are a fairly large number of features - it is useful to know the informa-
tion content of each of the features with respect to hydrogen gas production.
For this task, rough sets was employed to produce a reduced feature space.
Rough sets is used to reduce the feature space by generating a set of reducts -
collections of non-redundant attributes that map attributes to decision classes.
In this particular experiment, the decision class was based on the hydrogen
gas production. Since hydrogen gas producton is a continuous variable, it was
discretised into 3 categories (low, medium, and high), based on a clustering ap-
proach. Then rough sets was applied to produce a collection of decision rules,
which can be used as a classification tool. In order to corroborate the classifi-
cation results generated by the application of rough sets, a MLP was employed
as an independent classification approach. Firstly, the MLP was trained on the
full dataset, and the classification accuracy was examined using a 75/25 train-
ing/testing protocol. The MLP was then re-trained using the reduced dataset,
using the same 75/25 training/testing protocol. In order to compare the two
results, some constraints such as the number of training epochs and a reduced
architecture (number of input/hidden nodes) were employed in order to make
the pre/post reduction MLP based classifiers somewhat more realistic.

In the next section, we briefly describe the application of rough sets and
neural networks as employed in this study. This is followed by a description of
the dataset, followed by a brief presentation of the major results, and lastly a
discussion of this work is presented.

2 Rough sets

Rough set theory is a relatively new data-mining technique used in the
discovery of patterns within data first formally introduced by Pawlak in 1982
[2,3]. Since its inception, the rough sets approach has been successfully applied
to deal with vague or imprecise concepts, extract knowledge from data, and to
reason about knowledge derived from the data. We demonstrate that rough sets
has the capacity to evaluate the importance (information content) of attributes,
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discovers patterns within data, eliminates redundant attributes, and yields the
minimum subset of attributes for the purpose of knowledge extraction.

The first step in the process of mining any dataset using rough sets is
to transform the data into a decision table. In a decision table (DT), each
row consists of an observation (also called an object) and each column is an
attribute, one of which is the decision attribute for the observation d. Formally,
aDT is apair A = (U, A d) where d w A is the decision attribute, U is a finite
non-empty set of objects called the universe and A is a finite non-empty set of
attributes such that a : U— >V, is called the value set of a. Once the DT has
been produced, the next stage entails cleansing the data.

There are several issues involved in small datasets - such as missing values,
various types of data (categorical, nominal and interval) and multiple decision
classes. Each of these potential problems must be addressed in order to max-
imise the information gain from a DT. Missing values is very often a problem
in biomedical datasets and can arise in two different ways. [t may be that an
omission of a value for one or more subject was intentional - there was no rea-
son to collect that measurement for this particular subject (i.e. 'not applicable’
as opposed to 'not recorded’). In the second case, data was not available for a
particular subject and therefore was omitted from the table. We have 2 options
available to us: remove the incomplete records from the DT or try to estimate
what the missing value(s) should be. The first method is obviously the simplest,
but we may not be able to afford removing records if the DT is small to begin
with. So we must derive some method for filling in missing data without biasing
the DT. In many cases, an expert with the appropriate domain knowledge may
provide assistance in determining what the missing value should be - or else is
able to provide feedback on the estimation generated by the data collector. In
this study, we employ a conditioned mean/mode fill method for data imputa-
tion. In each case, the mean or mode is used (in the event of a tie in the mode
version, a random selection is used) to fill in the missing values, based on the
particular attribute in question, conditioned on the particular decision class
the attribute belongs to. There are many variations on this theme, and the
interested reader is directed to [3] for an extended discussion on this critical is-
sue. Once missing values are handled, the next step is to discretise the dataset.
Rarely is the data contained within a DT all of ordinal type - they generally
are composed of a mixture of ordinal and interval data. Discretisation refers
to partitioning attributes into intervals - tantamount to searching for ”cuts” in
a decision tree. All values that lie within a given range are mapped onto the
same value, transforming interval into categorical data. As an example of a dis-
cretisation technique, one can apply equal frequency binning, where a number
of bins n is selected and after examining the histogram of each attribute, n-1
cuts are generated so that there is approximately the same number of items in
each bin. See the discussion in [4,9] for details on this and other methods of
discretisation that have been successfully applied in rough sets. Now that the
DT has been pre-processed, the rough sets algorithm can be applied to the DT
for the purposes of supervised classification.
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The basic philosophy of rough sets is to reduce the elements (attributes) in
a DT based on the information content of each attribute or collection of at-
tributes (objects) such that the there is a mapping between similar objects and
a corresponding decision class. In general, not all of the information contained
in a DT is required: many of the attributes may be redundant in the sense that
they do not directly influence which decision class a particular object belongs
to. One of the primary goals of rough sets is to eliminate attributes that are
redundant. Rough sets use the notion of the lower and upper approximation
of sets in order to generate decision boundaries that are employed to classify
objects. Consider a decision table A = (U, A d) and let B C A and X C U.
What we wish to do is to approximate X by the information contained in B
by constructing the B-lower (Bz,) and B-upper (BY) approximation of X. The
objects in By, (BpX) can be classified with certainty as members of X, while
objects in BU are not guaranteed to be members of X. The difference between
the 2 approximations: BY - Br, determines whether the set is rough or not:
if it is empty, the set is crisp otherwise it is a rough set. What we wish to do
then is to partition the objects in the DT such that objects that are similar to
one another (by virtue of their attribute values) are treated as a single entity.
One potential difficulty arises in this regard is if the DT contains inconsistent
data. In this case, antecedents with the same values map to different decision
outcomes (or the same decision class maps to two or more sets of antecedents).
This is unfortunately the norm in the case of small biomedical datasets, such as
the one used in this study. There are means of handling this and the interested
reader should consult [4] for a detailed discussion of this interesting topic. The
next step is to reduce the DT to a collection of attributes/values that max-
imises the information content of the decision table. This step is accomplished
through the use of the indiscernibility relation IND(B) and is defined for any
subset BC A (B C AU {d}).

The elements of IND(B) correspond to the notion of an equivalence class.
The advantage of this process is that any member of the equivalence class can
be used to represent the entire class - thereby reducing the dimensionality of
the objects in the DT. This leads directly into the concept of a reduct, which is
the minimal set of attributes from a DT that preserves the equivalence relation
between conditioned attributes and decision values. It is the minimal amount
of information required to distinguish objects with in U. The collection of all
reducts that together provide classification of all objects in the DT is called
the CORE(A). The CORE specifies the minimal set of elements/values in the
DT which are required to correctly classify objects in the DT. Removing any
element from this set reduces the classification accuracy. It should be noted
that searching for minimal reducts is an NP-hard problem, but fortunately
there are good heuristics that can compute a sufficient amount of reducts in
reasonable time to be usable. In the software system that we employ an order
based genetic algorithm (o-GA) which is used to search through the decision
table for approximate reducts [5]. The reducts are approximate because we
do not perform an exhaustive search via the o-GA which may miss one or
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more attributes that should be included as a reduct. Once we have our set of
reducts, we are ready to produce a set of rules that will form the basis for
object classification.

Rough sets generates a collection of ’if..then..” decision rules that are used
to classify the objects in the DT. These rules are generated from the application
of reducts to the decision table, looking for instances where the conditionals
match those contained in the set of reducts and reading off the values from the
DT. If the data is consistent, then all objects with the same conditional values
as those found in a particular reduct will always map to the same decision
value. In many cases though, the DT is not consistent, and instead we must
contend with some amount of indeterminism. In this case, a decision has to be
made regarding which decision class should be used when there are more than 1
matching conditioned attribute values. Simple voting may work in many cases,
where votes are cast in proportion to the support of the particular class of ob-
jects. In addition to inconsistencies within the data, the primary challenge in
inducing rules from decision tables is in the determination of which attributes
should be included in the conditional part of the rule. If the rules are too de-
tailed (i.e. they incorporate reducts that are maximal in length), they will tend
to overfit the training set and classify weakly on test cases. What are generally
sought in this regard are rules that possess low cardinality, as this makes the
rules more generally applicable. This idea is analogous to the building block
hypothesis used in genetics algorithms, where we wish to select for highly ac-
curate and low defining length gene segments. There are many variations on
rule generation, which are implemented through the formation of alternative
types of reducts such as dynamic and approzimate reducts. Discussion of these
ideas is beyond the scope of this paper and the interested reader is directed
towards [4] for a detailed discussion of these alternatives. In the next section,
we describe the application of a multi-layer perceptron based neural network,
trained with the back-propagation algorithm. This is followed by the results of
this work, and lastly a conclusion follows.

3 Neural networks

Machine learning (ML), one of the broad subfield of the Artificial Intelli-
gence, is concerned with the development of algorithms and techniques that al-
low computers to "learn”. One of the main topics covered by ML is represented
by the artificial neural networks or, simply, neural networks (NN’s), also known
as neural computing, attempting to imitate the way a human brain works, by
creating connections between processing elements, the computer equivalent of
neurons. NN is an information processing paradigm that is inspired by the way
the brain processes information. The key of this paradigm is the novel archi-
tecture of the information processing system, consisting of a large number of
highly interconnected processing elements (neurons) working together to solve
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specific problems. NN’s represent a Computer Science discipline concerned with
nonprogrammed adaptive information processing systems that develop associ-
ations between objects and response to their environment. The basic unit of
any NN is represented by the artificial neuron, which captures the essence of
the biological neural model. Basically, the neuron receives a certain number of
inputs x; and sums them to produce an output. Usually the sums of each node
are weighted (the weight parameters w;), and the sum is passed through the
activation function, to produce the output of the neuron.

There are three phases in neural information processing: the training phase,
the testing phase and the using phase. In the training phase, a training dataset
is used to determine the weight parameters w; that define the neural model.
This trained neural model will be then tested on a testing dataset, different
from the training dataset, in order to check up the model performance on a new
dataset. Finally, the network will be used later in the using phase to process
real, unknown, patterns, yielding classification results. One of the most used
NN’s is the multi-layer perceptron (MLP). A MLP has three distinctive char-
acteristics, making it capable, at least theoretically, to represent a wide range
of computable functions:

- The model of each neuron in the network usually includes a smooth (i.e. dif-
ferentiable everywhere) nonlinear activation function, as opposed to the Rosen-
blatt’s perceptron, generalizing the input-output relation of the network;

- The network contains one or more layers of hidden neurons that are not part
of the input or output of the network, enabling the network to learn complex
tasks by extracting progressively more meaningful features from the input data;
- The network exhibits a high degree of connectivity between neurons.
Remark. Note that networks with just two layers are capable of approximat-
ing any continuous function. The architecture of NN (number of neurons and
topology of connections) can have significant impact on its performance in any
particular application. Various techniques have been developed for optimizing
the architecture, in some cases as part of the network training process itself.
Techniques such as an exhaustive search through a restricted class of network
architecture, pruning algorithms or network committee and mixture of experts
are commonly adopted in practice. To conclude, in the training mode, NN is
trained to associate outputs with input patterns. When the NN is used, it iden-
tifies the input pattern and tries to output the associated output pattern. If a
pattern that has no output associated with it is given as an input, NN gives
the output that corresponds to a taught input pattern that is least different
from the given pattern. For more details concerning NN’s, see [6], [7].

4 Bioreactor attributes

A typical bioreactor for producing hydrogen gas (biohydrogen) typically
deploys the use of microorganisms for fermenting waste products, yielding car-
bon dioxide (CO2) and hydrogen gas (Hs), the later of which can be used in
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many industrial applications, in addition to providing a usable source of en-
ergy [8], [9]. A typical bioengineering approach to this fermentation process
deploys a completely stirred reactor tank (CSRT). The sledge is added, along
with sucrose, as a direct food source for microorganisms, which then proceed
to produce the relevant gases. In this experiment, the bioreactor was operated
in a continuous feeding mode and the hydraulic reaction time (HRT) was 12
hours. During the HRT, the system was stabilized by monitoring and correct-
ing for pH (set at 6.7), and maintained until a steady-state was reached, and
6-10 samples of the parameters were recorded for model development. Table
1 below provides the parameters that were monitored in this study, and were
used as inputs to both MLP neural network and rough sets.
Table 1. Set of attributes and decision classes used in this study.

Parameter Name Data type / Correlation
Recycle ratio Categorical

Sucrose concentration Categorical

Substrate degradation % Continuous/(0.18)
Biomass Continuous /(0.27)

pH Continuous/ (0.31)
Alkalinity Continuous / (0.15)

ORP (oxidation-reduction potential)|Continuous / (-0.12)
Ethanol concentration Continuous / (0.29)
Acetate concentration Continuous / (0.21)
Butyrate concentration Continuous / (0.16)

HRT Categorical

CO: concentration Discretised - Decision class
H> concentration Discretized - Decision class

Note that since this study was investigating hydrogen gas production only,
the C'O4y decision class was not used in this study.

5 Results

The principal purpose of this study was to investigate whether there was
a differential information content of the various bioreactor attributes. To this
end, the rough sets approach to data mining was applied in order to quantify
the relative importance of the features against their decision class in the con-
text of classification accuracy. In order to apply rough sets, the data must be
discretised in order to reduce the number of rules to a reasonable value. Since
most of the features were continuous, including the decision attribute, the fea-
tures were discretized using an equal frequency binning approach (see [4] for
other examples of this approach). The decision attribute was binarised based
on the mean value: those values less then or equal to the mean were set to ’0’
and those above the mean were set to ’1’. Then the decision table was split into
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a 75/25 (209/69) training/testing paradigm, and this process was repeated 50
times, with replacement, and the results reported here are the averages of those
50 trials. Reducts were generated using an exhaustive approach (available from
Rosetta v 1.4.1 - the rough sets software employed in this study - see [10]), and
the decision rules were generated. The decision rules were then used to classify
the testing set, from which the results can be summarised within Rosetta via
a confusion matrix. Table 2 presents a confusion matrix, which summarizes in
tabular form the type I & II errors, the positive and negative predictive values
(PPV & NPV respectively), and the overall accuracy of the classification.

Table 2. Sample confusion matrix using the full dataset, based on a 72/25
training/testing split of the data.

Decision class|0 1

0 39 |0 |1

1 1 29 10.967
0.975(1.00{0.985

Note that bold value in the lower right corner is the overall classification
accuracy.

The application of rough sets to the full dataset yielded a significant number
of rules (4,480) without any rule filtering. By filtering on the left-hand support
(the number of times a particular feature appears as an antecedent within
the rule set), the number of rules was reduced without significantly reducing
the classification accuracy (average classification accuracy of 93.7% from 1,088
rules). One of the principle results obtainable from the rule base is statistics
on the particular attributes that were found within the rule set. In this study,
the rule set contained 7 of the total number of features (11 in total), a sig-
nificant reduction in the feature space. Note that the time and CO. features
were not included in any of the experiments reported in this paper. Table 3
presents several rules that support each decision class (low or high hydrogen
gas production):

Table 3. Sample of rules that were generated using the complete set of
attributes.

substrate degradation (%)([98.57470, 98.58360)) => High hydrogen
AND Biomass (g VSS/1)([*, 3. 50)) gas production
AND ORP (mV)([*, -431)) =

substrate degradation (%)([99 35820, 99.45350)) => Low hydrogen
AND Biomass (g VSS/1)([3. 81 3. 87)) gas production
AND ORP (mV)([*, -431)) =

substrate degradation (%)([9 9 13690, *)) => Low hydrogen

AND Biomass (g VSS/1)([*, 3.39)) AND pH([*, 6.59))|gas production
AND ALK (mg/L as CaCO3)([¥, 4575))
AND EtOH (mg COD/L)([3140.68994, *))
AND HAc (mg COD/L)([2932.27002, *))
AND HPr (mg COD/L)([870.62305, *))=
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The left-hand column depicts the attributes and their discritized values that
yield the consequents depicted in the right-hand column.

The data in table 3 (the 3"d rule) contains all of the attributes that were
informative in the decision mapping process - the rest of the attributes were
not included in the rule set (at least with any significant support). To corrob-
orate the classification efficacy of this particular decision table, a multi-layer
Perceptron based neural network (MLP-NN), trained with a standard vanilla
back-propagation algorithm (via Matlab) was used to produce a classifier, based
on the full feature set and the reduced set obtained from the rough sets anal-
ysis. Table 4 presents a summary of the application of the MLP-NN to the
full dataset. Note that a k-means algorithm was used to generate two decision
classes prior to the application of the MLP-NN.

Table 3. The classification error associated with running the full dataset
through the MLP-NN;, as a function of the number of hidden nodes.

No. hidden|Training Testing
neurons performance|performance

1 1 0.8333333 0.8804348

2 1 0.8333333 0.8804348

3 2 0.8494624 0.8804348

4 2 0.8602151 0.9021739

5 8 0.8924731 0.8695652

6 6 0.9247312 0.8695652

7 6 0.8978495 0.8586957

8 8 0.9569892 0.8369565

9 8 0.9408602 0.8369565
10 14 0.9516129 0.8478261
11 8 0.9516129 0.8478261
12 14 0.9731183 0.8804348
13 10 0.9731183 0.9021739
14 10 0.9139785 0.8478261
15 16 0.9784946 0.8913043
16 16 0.983871 0.8043478
Average/SD|5-Aug 0.92 / 0.05 |0.86 / 0.03
performance

The data was trained and tested on a 75/25 split of the data.

The MLP-NN was also run using the reduced dataset (containing 7 of
the attributes), under the same conditions as was used to generate the data
in table 4. The classification accuracy decreased somewhat, to an average of
90.5% (0.09), not statistically different from the results employing the complete
dataset. These results confirm the classification accuracy was only marginally
diminished when using the reduced dataset.
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6 Conclusions

The results from this preliminary study indicate that rough sets is a useful
technique for analyse data consisting of complex sets of features which may
contain many levels of non-linearity. The application of rough sets not only
reduced the input feature space from 11 to 7 attributes, but also provided a
classification accuracy that surpassed a standard MLP-NN trained with vanilla
back-propagation. The discretization which is required for the application of
rough sets is a critical feature in this processing pipeline, and clustering or some
statistical measure such as the mean can be sued to automated this process. In
this work, the mean was used to partition the decision attribute into 2 classes -
though equal frequency binning was used to discretise the other features. This
is a usual practise when applying rough sets to a dataset, as the discretization
is conditioned on the decision class, and hence can not be applied to discretize
the decision class attribute. Exploring the discretization of the decision class
is a timely process - and requires further exploration, a matter for future work
with this dataset.
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