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Abstract. A novel pre-multimodal evolutionary optimization inspec-
tion of the fitness landscape for an objective function would generally be
highly needed and is therefore proposed in present paper. An evolution-
ary population of samples in the domain of a given problem is generated
and clustered by means of two appropriately chosen approaches. The
aim is to direct a set of samples towards the basins of attraction within
the landscape of a function and subsequently group them around some
approximate optima. What results from the suggested evolutionary-
clustering tool is an estimation of the number of potential solutions for
the problem and consequently an informed choice for parameter set-
ting in subpopulation demarcation within a multimodal technique that
would tackle the considered objective.
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1 Introduction

Knowledge on the fitness landscape of a problem would be highly helpful
when attempting to address optimization by means of evolutionary algorithms
(EAs). The information on how multimodal the objective function is facilitates
the setting of appropriate values for parameters that control the differentiation
of individuals into subpopulations in order to be positioned in the probable
basins of attraction.

Due to inherent accuracy and simplicity, niching techniques [4] generally
represent the most common option for tackling possibly multimodal landscapes.
However, especially within such approaches, the central piece around which
separation into distinct species revolves is the radius threshold. Its assessment
must be carefully undertaken, since subpopulation formation in view of tracking
all existing optima heavily depends on it. An efficient means to estimate the
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value for the radius relies on a famous formula that needs nonetheless to identify
the number of optima of the underlying objective function [1].

Analysis of the fitness landscape with the purpose to estimate the number of
potential solutions for combinatorial optimization problems has already been
proposed [3] and [8]. Conversely, as concerns the continuous domain and to
the best of our knowledge, there has been no attempt to approximate the
amount of optima in the fitness landscape. It is in this respect that we propose
a straightforward hybridized evolutionary-clustering technique for the early
detection of the information on the number of existing basins of attraction. The
approach moreover strives to achieve a small expenditure of fitness evaluations,
since, aiming to be employed at the beginning of a multimodal evolutionary
technique, it must compulsory exhibit a low budget behavior.

A canonical EA [2] initially offers a directed population of individuals and
clustering is subsequently applied to the obtained potential solutions. Finally,
unification of adjacent clusters is performed by exploiting landscape topology.
Apart from an amount of clusters that gives the expected number of optima
of the problem, some rough values for the optima are outlined by the resulting
prototypes.

The paper is constituted in the following structure. Section 2 puts forward
the two clustering techniques selected for this experiment: The state-of-the-
art Jarvis-Patrick and the more recent, effective Nearest-Better grouping. The
motivation for their preference and the underlying working principles of these
methods are outlined and explained. Section 3 puts forward the suggested com-
bination between an EA and either of the two approaches, with a topological
tool to detect unifiable groups at the end of the clustering process. Section 4
presents the conducted experimentation and obtained results. The final section
contains the conclusions and outlook.

2 Clustering representatives

A simple EA is appointed to generate a population oriented towards the
basins of the optima. This resulting collection of individuals is next subject to
a clustering procedure. Two partitional high-speed clustering techniques have
been chosen as the means to discover the attraction clusters in the population
of potential solutions.

Jarvis-Patrick is a general clustering procedure for the determination of
non-globular, compact groups, while Nearest-Better is a simple method that
makes use of the fitness landscape when grouping individuals into clusters. It
will thus supplementarily be investigated which of the two approaches performs
better in terms of the goals of this paper.

2.1 Jarvis-Patrick clustering

The Jarvis-Patrick (JP) algorithm [5] is a non-hierarchical, non-iterative
type of clustering, based on a ”nearest neighbor” mechanism. The method self-
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determines the number of groups, every cluster contains at least one example
and there is no overlapping. The JP approach is suitable for those problems
where the goal is to identify non-globular clusters or compact clusters within
large dispersed groups and when the computational runtime is important. All of
the above represent a strong motivation to employ JP as a pre-multimodal EA
information detector on the number and location for the basins of attraction
of an objective function.

JP is laid out in high-level pseudocode in Algorithm 1, while visualization of
the clustering steps can be observed in Figure 1. J nearest neighbors, in terms
of (Euclidean) distance, are collected for each individual. The basic procedure
takes every two pairs of samples and performs the following verification: If the
two are contained in each other’s neighbor list and have at least K neighbors in
common, they are placed in the same cluster. A point cannot belong to more
than one cluster. Moreover, if x and y meet the condition to belong to the
same cluster and x and z also pass the two criteria, all three will be clustered
together, indifferent of the fact of whether y and z also respect the conditions.
After the formation of clusters, the prototypes are determined as the fittest
individuals in each of the groups.

The drawback of the algorithm consists in the two parameters J and K that
resulting clusters are very dependent upon. J indicates the number of neighbors
to be examined for each considered individual. A low value for this parameter
will lead to a good runtime but many small clusters, while a high number
will cause fewer larger groups of samples but longer computational effort. K
specifies the number of mutual neighbors and a low value will correspond to
tighter clusters, while a high one results in looser groups.

The JP algorithm does not take fitness landscape into account when forming
clusters, but as to counteract this disadvantage, the initial EA will have already,
after some generations, focused the individuals towards the promising areas of
the search space.

2.2 Nearest-Better clustering

The recently introduced Nearest-Better (NB) clustering mechanism [7] also
relies on a "nearest neighbor” principle, however topological information is
included in addition to location of points. For each individual, it considers
the connection to one immediate neighbor, which is also better in terms of
fitness. NB essentially assumes that the best individuals in different attraction
basins are much further away from each other than the average distance of
all individuals to their nearest better neighbors. Every individual connects to
its nearest better neighbor, once more in terms of (Euclidean) distance. The
longest edges — those higher than ¢- mean(lengths of all edges) — are removed
and the prototypes for each cluster are represented by those individuals that
do not connect to others. Clusters are thus formed around these individuals.

The NB technique is thoroughly described in Algorithm 2. It is probably
more appropriate for the current task, as it makes use of the search space
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Algorithm 1 The Jarvis-Patrick algorithm applied for an evolutionary gener-
ated sample collection.
Require: A population of individuals .
Ensure: Clusters of individuals: number, grouping, prototypes
for i = 1 to pop-size do
compute J nearest neighbors for z[i] and store them in N[i];
end for
for i = 1 to pop-size do
for j =1 to pop-size do
if (either z[i] or z[j] not clustered) and (z[i] € N[j] and z[j] € N[i]) and
IN[i]] N[j]| >= K then
z[i] and z[j] in the same cluster, either new or one already belonging to

it;
end if
end for
end for
return number of clusters, composition and fittest individual in each;

and fitness information along with an easier parametrization. This approach
possesses only one additional parameter to be tuned, with 2 being a good
default value [7].

Figure 2 sketches the formation of the clusters. It can be observed that the
resulting groups are similar to those deriving from JP in Figure 1. Nonetheless,
on a different configuration of points, as opposed to JP, NB is less reliant on
distances in the search space and obviously independent of a preset vicinity.

3 Evolutionary algorithms and clustering for fitness
landscape early examination

The proposed approach targets the application of each of the two clustering
methods to different stages of evolved populations. It could be argued that the
direct use of clustering would be sufficient, but this can only detect different
clusters representing optima after somehow progressing towards good regions
(as e.g. demonstrated in [6]); a random sample is hard to cluster meaningfully.

In order to move into promising areas, some optimization method has to
initiate an expressive set of samples. Conversely, marching too far by means of
an EA implies the danger of missing some optima on which the subpopulations
go extinct.

Therefore, it is suggested to design a methodology that employs a several
steps canonical EA to produce examples to be fed to either of the two clustering
approaches and finally unify the resulting clusters with space topology in view.

Comparing the number of detected optima against the total number of ob-
tained clusters during pre-experimentation lead to the insight that the two
methods largely overestimate the number of attraction basins for both consid-
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Fig. 1. Cluster formation within JP. The N matrix gives the list of neighbors for
J =3 and K =1 and curves shape the resulting clusters.

ered test functions, with an advantage on the NB side which is less deceiving.
The number of clusters was approx. 3 times higher than the amount of discov-
ered optima. The overrating clustering action of the two techniques had to be
resolved, in order to achieve the proposed goal. As a consequence, we applied
the topological inspection mechanism after clusters are determined, in order
to unify groups within the same basin. The fitness evaluations consumed in
this final step are also counted within the totally allowed value for an efficient
pre-multimodal EA information tool.

3.1 The topological cluster unification mechanism

The routine receives two cluster prototypes, checks their relative position
within the fitness landscape and returns a boolean value, which specifies whether
there is a valley between them or not. In the former circumstances, the con-
clusion is that they climb different hills, so the corresponding clusters should
remain separate. In the latter case, the prototypes lie on the same hill, so the
respective clusters should be merged. In order to reach a decision, a set of in-
terior points between the two is generated. If the fitness of all these is higher
than the minimal fitness of the two tested individuals, it is concluded that the
clusters track the same optimum. Conversely, if there exist such a point whose
fitness is smaller than the minimal fitness of the considered prototypes, then
it is assessed that the two clusters follow different peaks. The mechanism is
thoroughly described in Algorithm 3 [9].

A single required parameter refers to the number of interior points that
should be taken taken into account between two given prototypes. In all un-
dertaken experiments, such gradations are values taken equidistantly from the
interval [0,1]. It is obvious that, the higher the number of interior points, the
more precise the detection of clusters lying in the same basin of attraction or
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Algorithm 2 The Nearest-Better Clustering Algorithm
Require: A population of individuals .
Ensure: Clusters of individuals: number, grouping, prototypes.
for i = 1 to pop-size do
compute distances from z[i] to all individuals
end for
for i = 1 to pop-size do
find nearest individual that is fitter than x[], i.e. z[j];
if found then

edgeli] = j;
else
edge[i] = 0;
end if
end for

m = avglh=*"* (distance(z[i], z[edge[i]]));
for i = 1 to pop-size do
if edgeli] # 0 and distance(x[i], z[edgeli]]) > ¢+ m then

edge[i] = 0;
end if
end for
return the prototypes — z[i], where edge[{] = 0 — and membership to clus-
ters — z[i] € cluster[j], where edge"[i] = prototype[j], i = 1,2,..., pop-size,

j=1,2,...,n00 fClusters;

Algorithm 3 The topological unification mechanism for two cluster prototypes
r and y
Require: Two individuals « and y.
Ensure: Whether z and y track the same optimum or two different ones.
=1
found = FALSE;
while i < number of gradations and not found do
for j = 1 to number of dimensions do
interior; = xj + (y; — x;) - gradations;
end for
if f(interior) < min(f(x), f(y)) then
found = TRUE;
end if
end while
return found,
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Fig. 2. Cluster formation within NB for a function minimization problem. Straight
arrows point to edge creation, the dotted arrow shows that the corresponding edge
is removed, as it is longer than the given threshold, and curves shape the resulting
clusters.

within two different ones is. Contrarily, a small amount of considered grada-
tions roughens the final result, but it is more economical in terms of function
evaluations.

3.2 An evolutionary-clustering unified approach for an a priori
optima count

A canonical EA evolves a population of individuals for a number of fitness
evaluations and clustering is subsequently applied to the final generation. The
estimated number of basins is given by the resulting number of clusters, while
the approximate optima are given by the prototypes. The final approach is
given in Algorithm 4.

Algorithm 4 EA-Clustering for the estimation of the number of basins of
attraction for an objective function

Require: An objective function f to be optimized.
Ensure: Number of expected attraction basins.
apply a canonical EA on a population of individuals uniformly generated in the
domain of f;
if choice = JP then
apply JP to evolved population;
else
apply NB to evolved population;
end if
apply topological unification to resulting cluster prototypes;
return number of basins of attraction and approximate peaks;
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4 Experimental results

Experimentation aims to validate the proposed technique against a couple
of functions whose number and location of optima is known and compare the
performance of the two possible clustering options.

4.1 Test functions

The Waves function (F'1) is asymmetric and some peaks are difficult to find
as they lie on the border or on flat hills. The Six-Hump Camel Back function
(F2) exhibits two local optima that are not actually much higher than their
neighboring regions and thus can easily be missed (Table 1).

Table 1. Considered Benchmark Functions

Function Optima

Fl(z,y) = (0.3x)% — (y* — 4.5y%)xy — 4.7cos(3x — y*(2 + x))sin(2.50x))| 10
—09<2<12-12<y<12
F2(z,y) = —((4— 2027 + Z)2® + ay + (—4 + 4y%)y?) 6
—19<2<19,-11<y<11

4.2 Experimental setup

The same budget of fitness evaluations was used for either JP or NB, ranging
from 200 to a maximum of 2000. The values for all parameters were generated
using a Latin Hypersquare Design, i.e. 30 space-filling configurations were pro-
duced. The parameters of the evolutionary algorithm were generated within the
following intervals for both methods: Population size is between 2 and 200, mu-
tation and recombination probabilities between 0 and 1 and mutation strength
between 0 and 5. Additionally for the JP method, the values for the two pa-
rameters J and K were both created between 1 and 25 with the constraint that
J > K. Plus, as the number of neighbors cannot be higher than the population
size, the latter is between 25 and 200. The number of interior points considered
for the cluster unification method is a positive integer and is generated between
1 and 15. The ¢ parameter of NB remains at the default value of 2.

4.3 Results/observations

Table 2 gives the number of optima that were detected by the two compared
techniques on F1 and F2. Interest primary lies on the results obtained by the
best of the 30 configurations (Best columns), nevertheless, in order to have an
idea of a general trend, the average number of expected attraction basins and
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Table 2. Attraction basins found by JP and NB in the best configuration and average
over 30 configurations for F'1 and F'2 with different fitness evaluation budgets.

Fitness F1 F2
evaluation JP NB JP NB
calls Best Average Best Average Best Average Best Average
200 813 5.15 836 5.95 4 3.33 4 3.37
500 82 433 826 5.16 4 2.62 4 2.57
1000 81 268 856 324 396 1.75 3.83 1.7
2000 2 1.07 2.5 1.21 193 1.22 196 1.24

found solutions were also computed. Each configuration is repeated 30 times
and the average number of basins over all runs is calculated (Average columns).

The two potential choices for a clustering action behave quite similarly, with
a slight advantage on the NB side which additionally estimated a number of
clusters that is closer to the known value.

5 Conclusions and future directions

In this paper, an evolutionary-clustering hybrid approach was employed as
an informative tool prior to the use of a multimodal technique on the search
space of an objective function. The purpose was to obtain a rough approxima-
tion on the number of potential basins of attraction of the function which comes
of immense help in the interactions of subpopulation within a multimodal EA.

The proposed technique achieved the necessary knowledge through an ini-
tial EA generation of potential candidates for a clustering procedure. Two
suitable clustering methods for the given task were investigated and tests were
conducted on a couple of benchmark functions for multimodal optimization.

The novel approach accomplishes the intended goal, offering a simple and
even preferential means to acquire essential information on the landscape of
problems to be solved by evolutionary optimization.

In the future, a hybridized version between the two clustering methodologies
could lead to a more accurate estimation of the number of probable optima of an
objective function. More importantly, a means to additionally approximate the
size of the attraction basins would increase the ease in further subpopulation
differentiation.
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